Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Классификация сигналов

Лекция



Привет, Вы узнаете о том , что такое Классификация сигналов, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое Классификация сигналов , настоятельно рекомендую прочитать все из категории Теория сигналов и линейных систем.

Классификация сигналов

Классификация сигналов

Рис. 1.1.4. Классификация сигналов.

Классификация сигналов осуществляется на основании существенных признаков соответствующих математических моделей сигналов. Все сигналы разделяют на две крупных группы: детерминированные и случайные (рис. 1.1.4).

Классификация детерминированных сигналов. Обычно выделяют два класса детерминированных сигналов: периодические и непериодические.

К периодическим относят гармонические и полигармонические сигналы. Для периодических сигналов выполняется общее условие s(t) = s(t + kT), где k = 1, 2, 3, ... - любое целое число, Т - период, являющийся конечным отрезком независимой переменной.

Классификация сигналов

Классификация сигналов

Гармонические сигналы (или синусоидальные), описываются следующими формулами:

s(t) = AЧ sin (2pfоt+f ) = AЧ sin (wоt+f ),

s(t) = AЧ cos(wоt+j), (1.1.1)

где А, fo, wo, j, f - постоянные величины, которые могут исполнять роль информационных параметров сигнала: А - амплитуда сигнала, fо - циклическая частота в герцах, wо = 2pfо - угловая частота в радианах, j и f - начальные фазовые углы в радианах. Период одного колебания T = 1/fо = 2p/wo. При j = f -p /2 синусные и косинусные функции описывают один и тот же сигнал. Частотный спектр сигнала представлен амплитудным и начальным фазовым значением частоты fо (при t = 0).

Полигармонические сигналы составляют наиболее широко распространенную группу периодических сигналов и описываются суммой гармонических колебаний:

s(t) =Классификация сигналовAn sin (2pfnt+jn), (1.1.2)

или непосредственно функцией s(t) = y(t ± kTp), k = 1,2,3,..., где Тр - период одного полного колебания сигнала y(t), заданного на одном периоде. Значение fp =1/Tp называют фундаментальной частотой колебаний. Полигармонические сигналы представляют собой сумму определенной постоянной составляющей (fо=0) и произвольного (в пределе - бесконечного) числа гармонических составляющих с произвольными значениями амплитуд An и фаз j n, с периодами, кратными периоду фундаментальной частоты fp. Другими словами, на периоде фундаментальной частоты fp, которая равна или кратно меньше минимальной частоты гармоник, укладывается кратное число периодов всех гармоник, что и создает периодичность повторения сигнала. Частотный спектр полигармонических сигналов дискретен, в связи с чем второе распространенное математическое представление сигналов - в виде спектров (рядов Фурье).

В качестве примера на рис. 1.1.6 приведен отрезок периодической сигнальной функции, которая получена суммированием постоянной составляющей (частота постоянной составляющей равна 0) и трех гармонических колебаний с разными значениями частоты и начальной фазы колебаний. Математическое описание сигнала задается формулой:

s(t) =Классификация сигналовAcos(2Ч pЧ ft+jk),

где: Ak = {5, 3, 4, 7} - амплитуда гармоник; fk = {0, 40, 80, 120} - частота в герцах; jk = {0, -0.4, -0.6, -0.8} - начальный фазовый угол колебаний в радианах; k = 0, 1, 2, 3. Фундаментальная частота сигнала 40 Гц.

Классификация сигналов

Классификация сигналов

Частотное представление данного сигнала (спектр сигнала) приведено на рис. 1.1.7. Обратим внимание, что частотное представление периодического сигнала s(t), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с временным представлением.

Периодический сигнал любой произвольной формы может быть представлен в виде суммы гармонических колебаний с частотами, кратными фундаментальной частоте колебаний fр = 1/Тр. Об этом говорит сайт https://intellect.icu . Для этого достаточно разложить один период сигнала в ряд Фурье по тригонометрическим функциям синуса и косинуса с шагом по частоте, равным фундаментальной частоте колебаний Df = fp:

s(t) = Классификация сигналов(ak cos 2pkDft + bk sin 2pkDft), (1.1.3)

ao = (1/T)Классификация сигналовs(t) dt, ak = (2/T)Классификация сигналовs(t) cos 2pkDft dt, (1.1.4)

bk = (2/T)Классификация сигналовs(t) sin 2pkDft dt. (1.1.5)

Количество членов ряда Фурье K = kmax обычно ограничивается максимальными частотами fmax гармонических составляющих в сигналах так, чтобы fmax < K·fp. Однако для сигналов с разрывами и скачками имеет место fmax ® Ґ , при этом количество членов ряда ограничивается по допустимой погрешности аппроксимации функции s(t).

Одночастотные косинусные и синусные гармоники можно объединить и представить разложение в более компактной форме:

s(t) = Классификация сигналовSk cos (2pkDft-jk), (1.1.3')

Sk =Классификация сигналов, jk = argtg (bk/ak). (1.1.6)

Классификация сигналов

Рис. 1.1.8. Прямоугольный периодический сигнал (меандр).

Пример представления прямоугольного периодического сигнала (меандра) в виде амплитудного ряда Фурье в частотной области приведен на рис. 1.1.8. Сигнал четный относительно t=0, не имеет синусных гармоник, все значения jk для данной модели сигнала равны нулю.

Информационными параметрами полигармонического сигнала могут быть как определенные особенности формы сигнала (размах от минимума до максимума, экстремальное отклонение от среднего значения, и т.п.), так и параметры определенных гармоник в этом сигнале. Так, например, для прямоугольных импульсов информационными параметрами могут быть период повторения импульсов, длительность импульсов, скважность импульсов (отношение периода к длительности). При анализе сложных периодических сигналов информационными параметрами могут также быть:

- Текущее среднее значение за определенное время, например, за время периода:

(1/Т)Классификация сигналовs(t) dt.

- Постоянная составляющая одного периода:

(1/Т)Классификация сигналовs(t) dt.

- Среднее выпрямленное значение:

(1/Т)Классификация сигналов|s(t)| dt.

- Среднее квадратичное значение:

Классификация сигналов.

К непериодическим сигналам относят почти периодические и апериодические сигналы. Основным инструментом их анализа также является частотное представление.

Классификация сигналов

Почти периодические сигналы близки по своей форме к полигармоническим. Они также представляют собой сумму двух и более гармонических сигналов (в пределе – до бесконечности), но не с кратными, а с произвольными частотами, отношения которых (хотя бы двух частот минимум) не относятся к рациональным числам, вследствие чего фундаментальный период суммарных колебаний бесконечно велик. Так, например, сумма двух гармоник с частотами 2fo и 3.5fo дает периодический сигнал (2/3.5 – рациональное число) с фундаментальной частотой 0.5fo, на одном периоде которой будут укладываться 4 периода первой гармоники и 7 периодов второй. Но если значение частоты второй гармоники заменить близким значением Классификация сигналовfo, то сигнал перейдет в разряд непериодических, поскольку отношение 2/Классификация сигналов не относится к числу рациональных чисел. Как правило, почти периодические сигналы порождаются физическими процессами, не связанными между собой. Математическое отображение сигналов тождественно полигармоническим сигналам (сумма гармоник), а частотный спектр также дискретен.

Апериодические сигналы составляют основную группу непериодических сигналов и задаются произвольными функциями времени. На рис. 1.1.10 показан пример апериодического сигнала, заданного формулой на интервале (0, Ґ ):

s(t) = exp(-aЧ t) - exp(-bЧ t),

где a и b – константы, в данном случае a = 0.15, b = 0.17.

Классификация сигналов Классификация сигналов

Рис. 1.1.10. Апериодический сигнал и модуль спектра. Рис. 1.1.11. Импульсный сигнал и модуль спектра.

К апериодическим сигналам относятся также импульсные сигналы, которые в радиотехнике и в отраслях, широко ее использующих, часто рассматривают в виде отдельного класса сигналов. Импульсы представляют собой сигналы, как правило, определенной и достаточно простой формы, существующие в пределах конечных временных интервалов. Сигнал, приведенный на рис. 1.1.11, относится к числу импульсных.

Частотный спектр апериодических сигналов непрерывен и может содержать любые гармоники в частотном интервале [0, Ґ ]. Для его вычисления используется интегральное преобразование Фурье, которое можно получить переходом в формулах (1.1.3) от суммирования к интегрированию при Df ® 0 и kDf ® f.

s(t) =Классификация сигналов(a(f) cos 2pft + b(f) sin 2pft) df =Классификация сигналовS(f) cos(2pft-j(f)) df. (1.1.7)

a(f) = Классификация сигналовs(t) cos 2pft dt, b(f) = Классификация сигналовs(t) sin 2pft dt, (1.1.8)

S(f) =Классификация сигналов, j(f) = argtg (b(f)/a(f)). (1.1.9)

Частотные функции a(f), b(f) и S(f) представляют собой не амплитудные значения соответствующих гармоник на определенных частотах, а распределения спектральной плотности амплитуд этих гармоник по частотной шкале. Формулы (1.1.8-1.1.9) обычно называют формулами прямого преобразования Фурье, формулы (1.1.7) – обратного преобразования.

Если нас не интересует поведение сигнала за пределами области его задания [0, Т], то эта область может восприниматься, как один период периодического сигнала, т.е. значение Т принимается за фундаментальную частоту периодический колебаний, при этом для частотной модели сигнала может применяться разложение в ряды Фурье по области его задания (1.1.3-1.1.6).

В классе импульсных сигналов выделяют подкласс радиоимпульсов. Пример радиоимпульса приведен на рис. 1.1.12.

Классификация сигналов

Уравнение радиоимпульса имеет вид:

s(t) = u(t) cos(2pfot+jo).

где cos(2pfot+jo) – гармоническое колебание заполнения радиоимпульса, u(t) – огибающая радиоимпульса. Положение главного пика спектра радиоимпульса на частотной шкале соответствует частоте заполнения fo, а его ширина определяется длительностью радиоимпульса. Чем больше длительность радиоимпульса, тем меньше ширина главного частотного пика.

С энергетических позиций сигналы разделяют на два класса: с ограниченной (конечной) энергией и с бесконечной энергией.

Для сигналов с ограниченной энергией (иначе – сигналов с интегрируемым квадратом) должно выполняться соотношение:

Классификация сигналов|s(t)|2dt < ∞.

Как правило, к этому классу сигналов относятся апериодические и импульсные сигналы, не имеющие разрывов 2-го рода при ограниченном количестве разрывов 1-го рода. Любые периодические, полигармонические и почти периодические сигналы, а также сигналы с разрывами и особыми точками 2-го рода, уходящими в бесконечность, относятся к сигналам с бесконечной энергией. Для их анализа применяются специальные методы.

Иногда в отдельный класс выделяют сигналы конечной длительности, отличные от нуля только на ограниченном интервале аргументов (независимых переменных). Такие сигналы обычно называют финитными.

Классификация случайных сигналов. Случайным сигналом называют функцию времени, значения которой заранее неизвестны, и могут быть предсказаны лишь с некоторой вероятностью. Случайный сигнал отображает случайное физическое явление или физический процесс, причем зарегистрированный в единичном наблюдении сигнал не воспроизводится при повторных наблюдениях и не может быть описан явной математической зависимостью. При регистрации случайного сигнала реализуется только один из возможных вариантов (исходов) случайного процесса, а достаточно полное и точное описание процесса в целом можно произвести только после многократного повторения наблюдений и вычисления определенных статистических характеристик ансамбля реализаций сигнала. В качестве основных статистических характеристик случайных сигналов принимают:

а) закон распределения вероятности нахождения величины сигнала в определенном интервале значений;

б) спектральное распределение мощности сигнала.

Случайные сигналы подразделяют на стационарные и нестационарные. Случайные стационарные сигналы сохраняют свои статистические характеристики в последовательных реализациях случайного процесса. Что касается случайных нестационарных сигналов, то их общепринятой классификации не существует. Как правило, из них выделяют различные группы сигналов по особенностям их нестационарности.

Исследование, описанное в статье про Классификация сигналов, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое Классификация сигналов и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Теория сигналов и линейных систем

создано: 2020-11-27
обновлено: 2021-03-13
9



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Теория сигналов и линейных систем

Термины: Теория сигналов и линейных систем