Лекция
Это продолжение увлекательной статьи про имитация психологической интуиции с помощью искусственных нейронных сетей.
...
психологической интуиции с помощью искусственных нейронных сетей" >тем менее оно влияет на процесс обучения.
Таким образом, наряду с вычислением показателей значимости для оценки степени обученности нейросети, определением групп значимых сигналов появляется возможность на ранних этапах отсеивать сигналы, маловлияющие на процесс обучения и работу обученной нейросети.
Однако следует отметить, что данный алгоритм не страхует от того, что параметр, оказавшийся неважным в начале обучения, не станет доминирующим при окончательном доучивании нейронной сети.
Исходя из таких посылок, автор произвел расчет параметров значимости сигналов (вопросов) опросника ЛОБИ. При выборе сигналов с максимальной значимостью был получен список номеров вопросов, важных для определения данного типа, причем он в существенной части совпадал с ключевой выборкой для данного типа по ЛОБИ. При отсечении малозначимых входов был получен интересный результат — качество обучения сети существенно улучшилось (на 2-х таких сетях был получен результат 95.24% и 90.48%, или 20 и 19 правильных ответов из 21 тестового примера). Какой же вывод позволяет сделать данный результат?
Из самых грубых оценок необходимого объема экспериментальной выборки при создании тестовой методики следует, что если размерность «ключевой последовательности» составляет N вопросов, то для вычисления весовых коэффициентов при этих вопросах необходимая выборка должна составлять порядка N*N примеров. Как раз примерно такое соотношение (N — порядка 15, N*N — порядка 200) имело место в описанном эксперименте. Однако следует помнить, что множество вопросов теста, как правило, гораздо шире, чем необходимо для диагностики данного признака, поскольку методики в большинстве своем предназначены для определения нескольких признаков. А, следовательно, возникает следующая проблема: для определения параметров модели требуется M*M примеров, где M — общее число вопросов. Стоит, видимо, напомнить, что для методики ЛОБИ, например, M=162, тогда число примеров должно составить 26244, что практически нереально для практика — одиночки, не имеющего за спиной мощного исследовательского центра.
В случае же, когда выборка имеет недостаточный размер, возникает феномен «ложных корреляций» — модель определяет влияние на выходной результат тех параметров, которые на самом деле слабо с ним коррелируют. Именно такие «ложные корреляции» и вызывают ошибки при отнесении исследуемых к классу наличия или отсутствия диагностируемого типа.
В следующей серии экспериментов был использован прием, называемый «контрастированием». В нейроимитаторе «MultiNeuron» имеется возможность отключать часть входных сигналов. Достигается это тем, что синапсу, отвечающему за отключаемый вход, присваивается фиксированное значение — 0, которое не может быть изменено в процессе обучения. Тогда этот вход не влияет на процесс обучения сети. В данном эксперименте автор исходил из того, что входы, обладающие минимальной значимостью в области подстроечных параметров, которая соответствует обученному состоянию сети, являются несущественными для диагностики типа. Следовательно, при их отключении снижается размерность пространства входов, а следовательно — и потребный размер обучающей выборки. Кардинальное улучшение результатов обучения, достигнутое после проведения контрастирования подтверждает этот факт, ведь полученный из общих представлений объем экспериментальной выборки как раз оказался достаточным для обучения контрастированной сети.
Итак, на вопрос, заданный выше, мы можем ответить: улучшение результатов обучения после анализа и настройки входов свидетельствует о том, что контрастирование является средством борьбы с ложными корреляциями, и следовательно позволяет сократить объем экспериментальной выборки для многоплановых методик.
Кроме того, побочным результатом обработки может служить набор вопросов, существенных для данного типа, что может дать предмет для размышлений психологам — теоретикам.
1. Полносвязная нейронная сеть позволяет производить психодиагностику исследуемых на базе опросников классических тестов с вероятностью правильного ответа 95%.
2. Для создания нейросетевых экспертных систем не нужно вмешательства математика, данная технология позволяет программе непосредственно перенимать опыт психодиагноста.
3. Психодиагностическая методика, созданная на базе технологии нейросетевых экспертных систем адаптивна к смене социокультурных групп.
4. При помощи возможностей программных нейроимитаторов можно выполнять исследование параметров психодиагностических методик и уточнять их структуру.
В работе практических психологов, имеющих дело с подбором персонала или исследующих взаимоотношения внутри уже сложившихся групп (примером первого может служить психолог-консультант по подбору персонала, примером второго — офицер по работе с личным составом в частях, классный руководитель в школе) постоянно возникает задача установления и прогноза межличностных отношений в группе.
Под отношением в данной работе понимается психологический феномен, сутью которого является возникновение у человека психического образования, аккумулирующего в себе результаты познания конкретного объекта действительности (в общении это другой человек или группа людей), интеграции всех состоявшихся эмоциональных откликов на этот объект, а также поведенческих ответов на него [24]. Кроме того, общение обыкновенно происходит в условиях определенной ситуации: в присутствии других людей, которые для общающихся в разной степени субъективно значимы, на фоне какой-то конкретной деятельности, при действии каких-либо экспериментальных факторов.
В данной работе была поставлена задача смоделировать и, по возможности, спрогнозировать систему взаимоотношений в группе на основе состояния и поведения исследуемых, оставляя в стороне такие аспекты формирования отношений между людьми, как внешний облик, приписываемые человеку цели и мотивы [24]. Оценке и прогнозу подвергались межличностные «статусно-ролевые» [79] отношения в группах. Оценка совместимости «человек-человек» и «группа-человек» велась по оценке статуса исследуемых — индивидуальной (от каждого к каждому) и групповой (от группы к человеку).
Задача моделирования и прогнозирования взаимоотношений людей в группе (коллективе) неоднородна — она может быть условно подразделена на следующие подзадачи:
— прогноз вхождения исследуемого в сложившийся коллектив;
— прогноз совместимости между собой двух исследуемых.
Кроме того, при проведении экспериментов предполагалось апробировать к задаче прогноза межличностных отношений методику интуитивной выдачи предсказания минуя создание описанной (дескриптивной) [26] реальности.
Для определения фактических отношений в исследуемых группах применялась социометрическая методика. Данная методика позволяет определить положение исследуемого в системе межличностных отношений той группы, к которой он принадлежит. Социометрическое исследование группы обычно проводится тогда, когда группа включает в себя не менее 10 человек и существует не менее одного года. Всем членам исследуемой группы предлагается оценить каждого из товарищей (включая и самого себя — появляется возможность изучения самооценки исследуемых). В стандартном варианте методики оценка ведется по трехступенчатой шкале предпочтений — «приемлю — безразличен — отвергаю». Однако для получения большей разрешающей способности методики шкала была модифицирована до десятибалльной. В используемом варианте социометрического исследования применялось следующее задание: «Оцените своих товарищей, задав себе вопрос: «Насколько я бы хотел работать с этим человеком в одной группе?». Поставьте в соответствующей графе оценку от 1 до 10 баллов по следующему принципу: 1 — не хочу иметь с ним ничего общего, 10 — с этим человеком я бы хотел работать сильнее всего».
Результатом исследования для каждого из испытуемых в группе являлась стеновая оценка статуса и экспансивности. Стен [20] представляет собой усредненную оценку, нормированную в предположении, что оценки распределены по закону нормального распределения и, следовательно, выполняется правило «трех сигм». Статусом именуется стеновый балл всех оценок, сделанных данному члену группы, экспансивностью — стеновый балл всех оценок, сделанных данным испытуемым всем остальным представителям группы.
В процессе экспериментов предполагалось подтвердить (или отвергнуть) гипотезу о том, что нейросеть позволяет на основе психологических особенностей людей (представителей группы) моделировать взаимоотношения в группе и выдавать прогноз по вхождению в группу нового члена и по взаимоотношениям двух индивидуумов. Предполагалось также оценить качество прогноза — возможные значения ошибок и их распределение.
Описание личностных качеств испытуемых предполагалось получить на основе опросника, составленного А.Г. Копытовым (ППФ КГУ). Опросник включает в себя три субтеста, каждый из которых составлен из вопросов, предназначенных для определения константных свойств человеческой личности — темперамента, эмоциональности, контактности и т. п. Общее число вопросов — 90, в первом субтесте — 29, во втором — 25 и в третьем — 36. Текст опросников — см. Приложение 3.
Сбор данных производился путем проведения одновременного анкетирования в студенческих учебных группах по опроснику А.Г. Копытова и социометрического исследования. Затем результаты социометрии обрабатывались на специально разработанной программе (см. Приложение 2), рассчитывающей стеновые оценки статуса и экспансивности.
Эксперименты по обучению нейронных сетей производились на нейросетевом имитаторе MultiNeuron v2.0 в режиме предиктора, то есть нейросети, имеющей на выходе вещественное число (подробное описание — см. [85], [87]).
В этой серии экспериментов предполагалось проверить, насколько нейронные сети способны моделировать вхождение в группу отдельного человека.
По вышеописанной методике были обследованы три студенческие группы — третьего, четвертого и пятого курсов, общее число собранных анкет — 48 (19, 17 и 12 по группам соответственно). Результаты анкетирования каждой из групп был составлен задачник, представляющий собой реляционную таблицу, включающую следующие поля:
№ — автоиндексируемый номер записи, ID — номер испытуемого по списку группы, w1_1 — w1_29 — ответы на вопросы первого субтеста, w2_1 — w2_25 — ответы на вопросы второго субтеста, w3_1 — w3_36 — ответы на вопросы третьего субтеста, to1 — to30 — оценки, выставленные данным испытуемым членам группы (строка социометрической матрицы), St — значение стеновой оценки статуса данного испытуемого, Ex — экспансивности.
Для первого и третьего субтестов, у которых вопрос имел два варианта ответа («Да»/«Нет»), ответ кодировался по принципу 1 — «Да», 2 — «Нет». Второй субтест, имеющий три варианта ответов («а», «б, «в») — 1 — вариант «а», 2 — «б», 3 — «в».
При формирования структуры задачника поля w1_1 — w3_36 были обозначены как входные, поле Ex — как выходное. Нейросеть в процессе обучения должна была приобрести умение предсказывать статус члена группы по его ответам на опросник А.Г. Копытова.
Таблица 1. Результаты экспериментов по подбору оптимальных параметров нейросети, решающей задачу предсказания статуса исследуемых.
№№ | Характеристики сети | Hвыб | |
Nneu | s | ||
1 | 16 | 0.1 | 2,475 |
2 | 16 | 0,4 | 2,791 |
3 | 16 | 0,7 | 2,488 |
4 | 32 | 0,1 | 2,569 |
5 | 32 | 0,4 | 3,006 |
6 | 32 | 0,7 | 3,384 |
7 | 64 | 0,1 | 2,891 |
8 | 64 | 0,4 | 2,703 |
9 | 64 | 0,7 | 2,676 |
На первом этапе были проведены эксперименты для выяснения оптимальных параметров нейросети, предназначенной для решения задачи предсказания статуса члена группы. Из-за малочисленности выборок эксперименты велись в режиме «скользящего тестирования», когда для решения задачи обучается столько же сетей, сколько задач в задачнике. При обучении каждой из сетей одна задача исключалась, и потом сеть тестировалась по ней. Для оценки качества предсказания Hвыб применялся средний модуль ошибки ,
, чем ниже значение — тем, соответственно лучше предсказание. Результаты этого этапа экспериментов сведены в таблицу 1.
Значения чисел нейронов — Nneu — были взяты из следующих соображений: нейросети с числом нейронов менее 16 обучались решению задачи неустойчиво, процесс оптимизации постоянно заходил в тупик, а Hвыб во всех таких экспериментах превышало 3 (30% относительной погрешности). 64 является максимально допустимым значением числа нейронов для программы MultiNeuron v.2.0. Значения характеристических чисел нейронов были распределены в интервале от 0.1 до 0.7, поскольку данный интервал является, по опыту, накопленному в группе «НейроКомп» [32], [33], [34], [36], [39], [41], [59], [84], [86], интервалом, в котором как правило лежат оптимальные характеристические числа нейронов.
Таким образом, по результатам данной серии экспериментов оптимальным было признано количество нейронов, равное 16, и характеристический параметр нейрона равный 0.1, поскольку данные значения обеспечивают наилучшую выборочную оценку качества прогноза Hвыб.
Следующим этапом работы была серия экспериментов, позволяющих оценить точность предсказания статуса исследуемых внутри групп. Для каждой из групп было выполнено обучение сетей для проведения скользящего контроля. Затем результаты скользящего контроля фиксировались и сводились в табл. 2.
Таблица 2. Результаты экспериментов по установлению точности предсказания статуса исследуемых внутри групп
№ | Количество испытуемых | Hвыб |
1 | 19 | 2,587 |
2 | 17 | 2,854 |
3 | 12 | 2,475 |
Однако, по опыту применения нейроимитаторов, известно, что на одних и тех же обучающих выборках предсказание выдаваемое сетью может существенно разниться.
Причина этого в том, что начальная карта синаптических весов генерируется случайным образом. Для преодоления данной проблемы в практике создания нейросетей (см. например [36]) используется предсказание ответов группой сетей, обученных на одних и тех же данных — консилиумом.
Решено было применить этот метод и для данной задачи. При проведении скользящего контроля по выборке для каждого из случаев обучалась не одна нейросеть, а десять.
Фиксировались средние выборочные значения ошибки предсказания статуса каждым из экспертов, а затем, оценивалась погрешность предсказания всем консилиумом.
Для этого в качестве ответа на каждую из задач скользящего контроля подавалось среднее значение ответов десяти нейросетей — экспертов. Результаты этого эксперимента представлены в табл. 3.
Таблица 3. Оценки погрешностей предсказания статуса исследуемых в группах консилиумами сетей.
Nиссл | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | Hср | Hвыб |
19 | 3,02 | 3,68 | 3,88 | 4,13 | 3,14 | 3,38 | 4,09 | 3,46 | 2,82 | 3,32 | 3,49 | 2,83 |
17 | 3,32 | 4,80 | 4,33 | 4,50 | 4,46 | 3,15 | 3,72 | 4,31 | 3,20 | 4,51 | 4,03 | 3,84 |
12 | 2,20 | 2,68 | 3,23 | 2,59 | 3,86 | 2,96 | 2,82 | 3,28 | 3,52 | 2,58 | 2,97 | 2,41 |
Здесь Nиссл — число исследуемых в данной группе, H1 — H10 — средние ошибки предсказания статуса для каждой из сетей консилиума, Hср — среднее значение ошибки по всем сетям консилиума, Hвыб — ошибка предсказания всем консилиумом.
Таким образом по трем группам средний модуль ошибки составляет 3,08 (или, в относительных цифрах, средняя погрешность составляет 30,8%).
Такая погрешность является удовлетворительной для задачи предсказания статуса членов группы, поскольку как правило не выводит испытуемого из групп классификации — «лидер»-«середняк»-«аутсайдер», то есть отражает тенденцию вхождения в группу нового человека.
Кроме того, при статистическом исследовании экспериментальных выборок было вычислено среднее расстояние между случайными оценками и
где N — количество элементов выборки.
Можно считать, что характеризует математическое ожидание расстояния между двумя случайными примерами выборки.
Для экспериментов установления статуса тестируемых в группе , или 40.33%. Таким образом можно утверждать, что полученная сетью погрешность (30,8%) значимо отличается от случайной.
Следующая серия экспериментов производилась с целью уяснения, насколько можно предсказывать результаты вхождения в одну группу на базе опыта, накопленного сетью по другой группе.
В ходе экспериментов для каждой из групп был обучен консилиум из десяти нейросетей (их характеристики, как и в предыдущих экспериментах, Nneu=16, s=0,1). Здесь задачник подавался для обучения полностью, то есть сеть обучалась предсказанию статуса по всем представителям группы. Затем на сетях этого консилиума тестировались две другие группы.
Для сглаживания фактора случайности при генерации сетей в качестве вычисленных значений при расчете ошибки определения статуса брались по каждой оценке средние значения из вычисленных десятью сетями консилиума. Результаты этой серии экспериментов представлены в табл. 4.
Таблица 4. Результаты перекрестного тестирования
Об. | Тст. | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | Hср | Hвыб |
1 | 2 | 1,87 | 3,96 | 2,85 | 3,65 | 4,62 | 1,82 | 2,82 | 1,97 | 1,77 | 4,32 | 2,97 | 2,48 |
1 | 3 | 2,26 | 3,98 | 3,58 | 3,61 | 2,36 | 2,46 | 3,64 | 2,16 | 2,55 | 3,11 | 2,97 | 1,79 |
2 | 1 | 4,31 | 4,03 | 3,92 | 3,48 | 4,17 | 3,66 | 3,83 | 4,33 | 4,03 | 3,78 | 3,95 | 3,5 |
2 | 3 | 3,82 | 1,81 | 2,91 | 3,43 | 2,75 | 3,13 | 3,08 | 2,53 | 2,57 | 3,06 | 2,91 | 2,05 |
3 | 1 | 3,4 | 4,09 | 3,21 | 2,91 | 2,76 | 3,65 | 3,03 | 2,56 | 2,89 | 3,51 | 3,20 | 2,79 |
3 | 2 | 3,60 | 3,28 | 3,72 | 2,94 | 4,24 | 4,30 | 3,91 | 4,35 | 3,60 | 4,13 | 3,81 | 3,77 |
Здесь Об. — порядковый номер группы, по которой обучались нейронные сети консилиума, Тст. — порядковый номер группы, по которой сети тестировались.
При анализе данной серии экспериментов заметны следующие закономерности:
— предсказание социального статуса испытуемых нейронными сетями, обученными по другим группам (не по тем, в которой производилось определение статуса при социометрическом опросе) по своему качеству несколько хуже, чем такое же предсказание, сделанное нейросетями, обученными на этой же группе;
— однако, в большинстве случаев (в двух третях из проведенных экспериментов) оценка качества (средний модуль ошибки Hвыб) является приемлемой (менее 3 баллов или, в относительных значениях — менее 30%);
— хорошо видно, как при предсказании статуса испытуемых в группах реализуется принцип создания надежных систем из ненадежных элементов, заложенный в концепцию нейронных сетей: ошибка предсказания одной нейросетью может составлять неприемлемо большую величину, однако консилиум из нескольких нейросетей решает задачу существенно лучше — ошибка предсказания консилиумом сетей меньше большинства из ошибок отдельных сетей, она также всегда меньше чем среднее значение ошибок отдельных сетей консилиума.
После оценки качества предсказания между группами решено было проверить гипотезу о том, что нейросеть может накапливать опыт не только по отдельной группе, но и аккумулировать его по любой заданной последовательности испытуемых. Для проверки гипотезы была предпринята следующая серия экспериментов: данные по всем группам были объединены в один задачник, по которому проводилось скользящее тестирование консилиума из десяти сетей — экспертов. Результаты данной серии из 480 экспериментов представлены в табл. 5.
Таблица 5. Результаты тестирования консилиумов сетей, обученных по полной выборке.
№ эксперта | Hвыб |
1 | 3,02 |
2 | 2,56 |
3 | 2,88 |
4 | 3,04 |
5 | 2,94 |
6 | 2,88 |
7 | 2,74 |
8 | 2,46 |
9 | 2,59 |
10 | 3,12 |
Весь консилиум | 2,32 |
Видно, что, как и в предыдущей серии экспериментов, погрешность каждого из экспертов (и, как минимум, математическое ожидание погрешности) выше, чем погрешность консилиума, то есть математическое ожидание оценок по консилиуму сетей всегда (или, вернее, в большинстве случаев) ближе к верному ответу, чем оценки отдельных экспертов.
Кроме того легко заметить, что предсказание статуса исследуемых в группе улучшается с накоплением выборки — оценка погрешности предсказания, сделанного нейросетями, обученными по объединенной выборке лучше, чем в любых других экспериментах.
Иначе говоря, нейросети обладают возможностью аккумулировать опыт предсказания социометрического статуса исследуемых в группе, причем этот опыт не локален — навык, полученный на исследуемых одной группы значим и для оценки исследуемых, принадлежащих к другим группам.
Этот результат подтверждает тезис, приведенный в [98], о том, что оценки равных в группе устойчивы и, видимо, на них не влияет изменение состава группы.
Причина этого феномена, предположительно, в том, что при предсказании статуса испытуемых информация о них существенно ограничена — отсутствуют данные анамнестического плана, данные об их социальном положении.
Этим практически исключается из состава используемых в прогнозе данных информация о внешнем облике, принадлежности к социокультурной или национальной группе — то есть вся социальная история личности и коллектива в целом, хотя известно, что эти факторы могут вызвать существенное различие в поведении людей со схожим типом личности.
Информация же о константных психологических качествах испытуемых относительно однородна от группы к группе, что позволяет нейросети накапливать опыт, основанный на ней.
Следующим этапом работ по прогнозу статуса испытуемых в группах было определение значимости вопросов опросника и исключение из него наименее значимых вопросов.
Согласно результатам главы 2 это может привести к улучшению качества прогноза, выдаваемого нейросетью. Для решения данной задачи была использована возможность вычисления значимости параметров, заложенная в MultiNeuron.
Были обучены пять нейронных сетей по задачнику, включающему все три группы исследуемых, затем, средствами MultiNeuron, определены числовые значения значимости сигналов, соответствующих вопросам опросника.
После этого список вопросов был отсортирован по среднему значению величины значимости. В результате была получена следующая картина (вопросы размещены по убыванию значимости):
1_6. Вы
продолжение следует...
Часть 1 Имитация психологической интуиции с помощью искусственных нейронных сетей
Часть 2 1.4. Перспективные алгоритмы построения психодиагностических методик - Имитация психологической интуиции
Часть 3 1.7 Нейронные сети - Имитация психологической интуиции с помощью искусственных
Часть 4 Глава 3. Интуитивное предсказание нейросетями взаимоотношений - Имитация психологической интуиции
Часть 5 Приложение. Психологический опросник А.Г. Копытова - Имитация психологической интуиции с
Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Комментарии
Оставить комментарий
Математические методы в психологии
Термины: Математические методы в психологии