Лекция
Привет, Вы узнаете о том , что такое датчик температуры, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое датчик температуры , настоятельно рекомендую прочитать все из категории Датчики и сенсоры, Технические измерения и измерительные приборы .
Датчики температуры нужны для того, чтобы проконтролировать температуру в помещении, жидкости, твердого объекта или расплавленного металла.
Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой. Величины могут преобразовываться друг в друга и обратно. Цифровой код создает повышенную точность замера, скорость и чувствительность.
Бесконтактные – осуществляют измерения на основе теплового излучения тел. Такой метод позволяет проводить измерения, находясь на удалении. Помимо этого они применяются для измерения высочайших температур, при которых контактные датчики работать не смогут. Однако к проблемам таких измерителей относят низкую точность измерения низких температур. Нередко и вовсе становиться невозможно, измерить такие температуры.
Контактные – проводят измерения, основываясь на принципе теплового равновесия между измеряемым объектом и чувствительным элементом измерительного прибора. К таким относятся термопары, терморезисторы и др.
Термопара представляет собой две проволоки из разных металлов, спаянных между собой. При разности температур между горячим и холодным концом в цепи возникает электрический ток. Величина этого электрического тока зависит от термоэлектрической силы термопары, составляет от 40 до 60 мкВ, в зависимости от материала термопары. Материал термопары может быть разным. Это могут быть никель-хромовые, хромо-алюминиевые, железо-никелевые, железо-константановые и т.д.
Термопара является высокоточным датчиком температуры, однако эту точность достаточно проблематично снять. Термопара является относительным датчиком температуры, уровень ее напряжения имеет зависимость от температурной разности между спаями. При этом холодный спай находится при комнатной температуре или при какой-либо другой.
Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).
Рассмотрим работу термопары подробнее. Есть две термопары и две температуры горячего и холодного конца. Соответственно ЭДС зависит от разности температур. Температуру холодного спая необходимо компенсировать. Аппаратным способом компенсации является использование второй термопары, которая помещена в заранее известную температуру.
Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС. Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает. Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.
Программным способом компенсации является использование другого датчика температуры, на этот раз абсолютного, который помещается в изотермическую камеру вместе с холодными спаями и контролирует их температуру с заданной точностью.
Недостатки датчиков использующие термопары.
Во-первых, она нелинейная. В ГОСТе заботливо введены коэффициенты полинома для перевода ЭДС в температуру и обратно. Эти полиномы большого порядка, но ничто не запрещает спокойно их посчитать силами контроллера.
Во-вторых, другая проблема заключается в том, что термо-ЭДС термопары измеряется в единицах и сотнях микровольт. Соответственно, использование широко доступных аналогоцифровых преобразователей приведет к полному провалу. Нужны прецизионные многоразрядные малошумящие аналогоцифровые преобразователи для того, чтобы использовать термопару в своих конструкциях.
Проблемы с точностью измерений термопары создает и используемые материал, наличие в нем примесей и способ обработки. Все это может влиять на термоэдс прибора в целом.
Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:
Технические требования к термопарам задаются параметрами определенными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены ГОСТ Р 8.585-2001. Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001. Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.
Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.
В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземленными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.
Рис. 5. Типы спаев
Буквами обозначено:
Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.
С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.
Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя. Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других емкостях, предназначенных для переработки жидкостей химическим способом.
Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.
Выше мы рассмотрели типы термоэлектрических преобразователей. У читателя, скорее всего, резонно возник вопрос: Почему так много типов термопар существует?
Дело в том, что заявленная производителем точность измерений возможна только в определенном интервале температур. Именно в этом диапазоне производитель гарантирует линейную характеристику своего изделия. В других диапазонах зависимость напряжения от температуры может быть нелинейной, а это обязательно отобразится на точности. Следует учитывать, что материалы обладают разной степенью плавкости, поэтому для них существует предельное значение рабочих температур.
Для сравнения термопар составлены таблицы, в которых отображены основные параметры измерительных преобразователей. В качестве примера приводим один из вариантов таблицы для сравнения распространенных термопар.
Таблица 1.
Тип термопары | K | J | N | R | S | B | T | E |
Материал положительного электрода | Cr—Ni | Fe | Ni—Cr—Si | Pt—Rh (13 % Rh) | Pt—Rh (10 % Rh) | Pt—Rh (30 % Rh) | Cu | Cr—Ni |
Материал отрицательного электрода | Ni—Al | Cu—Ni | Ni—Si—Mg | Pt | Pt | Pt—Rh (6 % Rh | Cu—Ni | Cu—Ni |
Температурный коэффициент | 40…41 | 55.2 | 68 | |||||
Рабочий температурный диапазон, ºC | 0 до +1100 | 0 до +700 | 0 до +1100 | 0 до +1600 | 0 до 1600 | +200 до +1700 | −185 до +300 | 0 до +800 |
Значения предельных температур, ºС | −180; +1300 | −180; +800 | −270; +1300 | – 50; +1600 | −50; +1750 | 0; +1820 | −250; +400 | −40; +900 |
Класс точности 1, в соответствующем диапазоне температур, (°C) | ±1,5 от −40 °C до 375 °C | ±1,5 от −40 °C до 375 °C | ±1,5 от −40 °C до 375 °C | ±1,0 от 0 °C до 1100 °C | ±1,0 от 0 °C до 1100 °C | ±0,5 от −40 °C до 125 °C | ±1,5 от −40 °C до 375 °C | |
±0,004×T от 375 °C до 1000 °C | ±0,004×T от 375 °C до 750 °C | ±0,004×T от 375 °C до 1000 °C | ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C | ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 ° | ±0,004×T от 125 °C до 350 °C | ±0,004×T от 375 °C до 800 °C | ||
Класс точности 2 в соответствующем диапазоне температур, (°C) | ±2,5 от −40 °C до 333 °C | ±2,5 от −40 °C до 333 °C | ±2,5 от −40 °C до 333 °C | ±1,5 от 0 °C до 600 °C | ±1,5 от 0 °C до 600 °C | ±0,0025×T от 600 °C до 1700 °C | ±1,0 от −40 °C до 133 °C | ±2,5 от −40 °C до 333 °C |
±0,0075×T от 333 °C до 1200 °C | ±0, T от 333 °C до 750 °C | ±0,0075×T от 333 °C до 1200 °C | ±0,0025×T от 600 °C до 1600 °C | ±0,0025×T от 600 °C до 1600 °C | ±0,0075×T от 133 °C до 350 °C | ±0,0075×T от 333 °C до 900 °C | ||
Цветовая маркировка выводов по МЭК | Зеленый — белый | Черный — белый | Сиреневый — белый | Оранжевый — белый | Оранжевый — белый | Отсутствует | Коричневый — белый | Фиолетовый — белый |
Каждая новая точка соединения проводов из разнородных металлов образует холодный спай, что может повлиять на точность показаний. Об этом говорит сайт https://intellect.icu . Поэтому подключения термопары выполняют, по возможности, проводами из того же материала, что и электроды. Обычно производители поставляют изделия с подсоединенными компенсационными проводами.
Некоторые измерительные приборы содержат схемы корректировки показаний на основе встроенного термистора. К таким приборам просто подключаются провода, соблюдая их полярность (см. рис. 6).
Рис. 6. Компенсационные провода
Часто используют схему подключения «на разрыв». Измерительный прибор, подключают через проводник того же типа что и клеммы (чаще всего медь). Таким образом, в местах соединения отсутствует холодный спай. Он образуется лишь в одном месте: в точке присоединения провода к электроду термопары. На рисунке 7 показана схема такого подключения.
Рис. 7. Схема подключения на разрыв
При подключении термопары следует как можно ближе размещать измерительные системы, чтобы избежать использования слишком длинных проводов. Во всяком проводе возможны помехи, которые усиливаются с увеличением длины проволоки. Если от радиопомех можно избавиться путем экранирования проводки, то бороться с токами наводки гораздо сложнее.
В некоторых схемах используют компенсирующий терморезистор между контактом измерительного прибора и точкой холодного спая. Поскольку внешняя температура одинаково влияет на резистор и на свободный спай, то данный элемент будет корректировать такие воздействия.
И напоследок: подключив термопару к измерительному прибору, необходимо, пользуясь градуировочными таблицами, выполнить процедуру калибровки.
Применение термопар
Термопары используются везде, где требуется измерение температуры в технологической среде. Они применяются в автоматизированных системах управления в качестве датчиков температуры. Термопары типа ТВР, у которых внушительный диаметр термоэлектрода, незаменимы там, где требуется получать данные о слишком высокой температуре, в частности в металлургии.
Газовые котлы, конвекторы, водонагревательные колонки также оборудованы термоэлектрическими преобразователями.
Преимущества термопар
Недостатки термопар
Недостатками изделий являются факторы:
Терморезисторы
Гораздо более простым способом измерения стало применение терморезисторов. Они работают на зависимости сопротивления материалов от внешней температуры. Металлические термометры сопротивления, в частности платиновые обладают очень высокой точностью и линейностью. Термометры сопротивления определяются двумя основными характеристиками.
пример датчика использующий терморезистор для измерения температуры KY-013
Это базовое сопротивление термометра при определенной температуре. В ГОСТе базовым сопротивлением считается сопротивление при 0 градусах по Цельсию. ГОСТ рекомендует использование нескольких номиналов сопротивлений в Омах и температурный коэффициент, который определяется как разность сопротивлений нашей температуры и при 0 градусов, деленной на нашу температуру и t нуля градусов, умноженную на единицу, деленную на базовое сопротивление.
Ткс = (Re – R0c) / (Te – T0c) *1/R0c
В ГОСТе на терморезисторы вы найдете температурный коэффициент для различных термометров из платины, меди и никеля. Кроме того, там присутствуют коэффициенты полинома для расчета температуры из текущего сопротивления резистора. Одной из проблем термометров сопротивления является очень низкий температурный коэффициент сопротивления. Однако, измерять сопротивление с высокой точностью гораздо проще, чем очень малые значения напряжения в отличие от термопар.
К минусам терморезисторов относят не очень высокую точность и подверженность к износу измерительного материала вызывающее еще большее падение точности со временем.
Акустические термодатчики температуры
Акустические термодатчики – используются преимущественно для измерения средних и высоких температур и применяются в экстремальных условиях (в диапазоне криогенных температур, при высоких уровнях радиации в ядерных реакторах и т.д.), а также при проведении измерений в замкнутом герметичном объеме, где невозможно разместить контактные датчики или использовать пирометры. Состоят из пространственно разнесенных излучателя и приемника акустических волн. Излучатель испускает сигнал, который проходит через исследуемую среду. Измеряя время прохождения сигнала известного расстояния между излучателем и приемником и зная базовую скорость распространения ультразвука в данной среде при известной температуре вычислитель считает скорость распространения при данной температуре, по которой затем вычисляется температура. Например, для газов зависимость скорости ультразвука от температуры выражается формулой:
где Т — абсолютная температура.
a - коэффициент, зависящий от давления, плотности, молекулярной массы газа.
Пример акустического датчика температуры приведен на рисунке хх
Рис. Акустический датчик температуры .
Датчик состоит из трех компонентов: ультразвуковых передатчика и приемника, а также герметичной трубки, заполненной газом. Передатчик и приемник представляют собой керамические пьезоэлектрические пластины, акустически несвязанные с трубкой, что обеспечивает распространение звука преимущественно через газ внутри трубки. В качестве газа чаще всего используется сухой воздух. Тактовое устройство запускает передатчик, который посылает в трубку короткий ультразвуковой импульс, который пройдя через тестируемую среду трубки принимается приемником. Время прохождения сигнала подается в контроллер, который вычисляет скорость распространения ультразвука, а затем определяет температуру тестируемой среды.
Миниатюрные акустические датчики температуры используют принцип модуляции (зависимости) частоты электронных генераторов, построенных на основе времязадающих элементов поверхностных акустических волн (ПАВ). Фактически, такие интегральные акустические датчики являются прямыми преобразователями температуры в частоту. Такие датчики имеют чувствительность в пределах нескольких кГц на градус.
Полупроводниковые датчики температуры
Одним из способов измерения сопротивления является включение нашего термосопротивления в цепь источника тока и измерение дифференциального напряжения. Использование полупроводников даст нам температурный коэффициент доли единицы процента, их гораздо проще измерять с помощью аналогоцифровых преобразователей. Есть интегральные микросхемы датчиков температуры, аналоговый выход которых уже соответствует питаемому напряжению. Такие датчики температуры можно напрямую подключать к аналогоцифровому преобразователю и спокойно оцифровывать его с помощью восьми- или десятибитного АЦП.
Существуют датчики в виде микросхем. Они имеют встроенной к чувствительному элементу структурой формирования исходящего сигнала. Такие датчики бывают аналоговые и цифровые. Подключение таких аппаратов к микроконтроллерам является очень простым. Аналоговые подключаются к ADC, а цифровые с любой популярный интерфейс (чаще IC).
Комбинированный датчик
Помимо интегральных схем с выходом, существуют датчики с цифровым интерфейсом. Одним из популярных датчиков является комбинированный датчик температуры и влажности серии SHT1. Этот датчик позволяет измерять температуру с точностью + 2 градуса и влажность с точностью + 5 градусов. Главной проблемой данного датчика температуры является то, что там решили оптимизировать интерфейс. Он позволяет подключать параллельные устройства.
Цифровой датчик
Цифровой датчик температуры DS18B20, который представляет собой трехвыводную микросхему, позволяет с высокой точностью до 0,5 градуса получать температуру с множеством параллельно работающих датчиков. В этом датчике широкий интервал температур от -55 до +125 градусов. Основной его недостаток – медлительность. Вычисления с максимальной точностью он делает за 750 мс. Ввиду инерционности корпуса датчика температуры опрашивать его нет никакого смысла.
Бесконтактные датчики (пирометры)
В этом датчике имеется специальная тонкая пленка, поглощающая инфракрасные излучения, тем самым нагревающаяся. Такие бесконтактные термосенсоры используются в тепловизорах. Там имеется не один тепловой датчик, а матрица. Они позволяют на расстоянии до 3 метров детектировать тепловой объект.
Кварцевые преобразователи температуры
Для того, чтобы измерить температуру в интервале -80 +250 градусов применяют кварцевые преобразователи. Они работают на частотной зависимости кварца от температуры. Действие датчиков происходит на частотной зависимости. Функция преобразователя меняется от расположения среза по осям кристалла.
Кварцевые датчики работают с высокой чувствительностью, разрешением, стабильностью. Эти свойства делают их перспективными в использовании. Они получили большое распространение в цифровых термометрах.
Шумовые датчики температуры
Работа шумовых датчиков заключается на зависимости шумовой разности потенциалов на резисторе от температуры. Практически реализовать способ измерения температуры шумовыми датчиками можно, сделав сравнение шумов 2-х одинаковых резисторов, один находится при определенной температуре, 2-й при измеряемой температуре. Шумовые датчики температуры применяются для температурного интервала -270 -1100 градусов.
Преимуществом шумовых датчиков стала возможность измерения температуры в термодинамике на вышеописанной закономерности. Но это осложнено трудным измерением напряжения шума, так как оно мало и сравнимо с шумом усилителя.
Датчики температуры ЯКР (ядерного квадрупольного резонанса)
Термометры ЯКР работают за счет действия градиента поля тока решетки кристалла и момента ядра, которое вызвано отклонением заряда от симметрии сферы. Это создает процессию ядер. Частота имеет зависимость от градиента поля решетки. Для разных веществ имеет величину до тысяч МГц. Градиент зависит от температуры, с ее возрастанием частота ЯКР уменьшается.
Датчики температуры ЯКР образуют ампулу с веществом, помещенную в обмотку индуктивности, которая соединена с контуром генератора. Когда частота генератора совпадает с частотой ЯКР, то энергия генератора поглощается. Допуск замера температуры -263 градуса равен + 0,02 градуса, а температуры 27 градусов +0,002 градуса. Преимуществом термометров ЯКР становится стабильность, неограниченная по времени, недостатком является значительная нелинейность преобразующей функции.
Объемные преобразователи
Объемные датчики действуют на расширении и сжатии веществ при изменении температуры. Диапазон действия преобразователей определяется, насколько стабильны свойства материалов. Датчиками делают измерения температуры в интервале -60 -400 градусов. Допуск измерения составляет от 1 до 5%. Интервал работы датчика с жидкостью может зависеть от температуры закипания и замерзания. Погрешности измерения датчиков на жидкости от 1 до 3%, определяются температурой среды.
Нижняя граница измерения преобразователей на газе определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры.
Параметры выбора датчика температуры
сравнение различнных видов датчиков
Металлооксидные NTC термисторы | Полупроводниковые KTY датчики | Термопары | Платиновые терморезисторы на керамической подложке |
Диапазон температуры измерения -100…300°C, некоторые модели до 500 °C | Диапазон температуры измерения -55…300°C | Диапазон температуры измерения -200…1800°C | Диапазон температуры измерения -196…1000°C |
Нелинейные выходные характеристики Отсутствие их международных стандартов | Более линейные характеристики, чем у NTC термисторов, погрешность не менее 0.6°C | Наличие международного стандарта типов термопар | Высокая линейность характеристик, установленная стандартом DIN EN 60751 |
Диапазон измерений зависит от типа термистора, стандартный диапазон 200 К | Диапазон измерений 200 К, стандарт: -55…+150°C | Диапазон измерений -40…1700°C (зависит от типа термопары), требуется компенсация холодного спая | Диапазон измерений стандартный: -70…+500°C, высокий: -40…1000°C |
Дрейф сопротивления: 0.35% через 100 ч при температуре 150°C | Дрейф сопротивления: 0.45% через 1250 ч при температуре 150°C. | Зависит от строения термопары | Дрейф сопротивления:0.04% через 1000 ч при температуре 500°C |
Точность сопротивления ± 1%, ±0.2°C в узком диапазоне температур | Точность ссч опротивления ± 5%, максимальная точность ±0.5% | Точность соответствует классу 2, зависит от типа термопары | Точность соответствует DIN EN 60751, класс B: ± 0.21% при +100°C± 0.33% при +500 °C |
Высокая чувствительность для узких температурных диапазонов, значительное изменение сопротивления на градус Кельвина, чем у платиновых и полупроводниковых датчиков | Высокая чувствительность, около 15 ohm/K | Диапазон чувствительности от мкВ/K до мВ/K, зависит от типа термопары | Чувствительность стабильна во всем диапазоне температур, напр., менее 4 Ом/К для датчика 1000 Ом |
Типы: эпоксидная или стеклянная изоляция; в корпусах DO-35, SMD модели, для автоматической сборки | Типы: стеклянный корпус, SMD и DO-35 корпуса | Типы: Термопары с неогранической изоляцией, голые проводники | Типы: базовые элементы с проводами, SMD, SOT223 и TO92 корпуса |
Исследование, описанное в статье про датчик температуры, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое датчик температуры и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Датчики и сенсоры, Технические измерения и измерительные приборы
Комментарии
Оставить комментарий
Датчики и сенсоры, Технические измерения и измерительные приборы
Термины: Датчики и сенсоры, Технические измерения и измерительные приборы