Лекция
Привет, Вы узнаете о том , что такое детектор частиц, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое детектор частиц, детектор элементарных частиц, детектор ионизирующего излучения, сцинтилляционный счетчик , настоятельно рекомендую прочитать все из категории Датчики и сенсоры, Технические измерения и измерительные приборы .
детектор частиц , детектор элементарных частиц , детектор ионизирующего излучения в экспериментальной физике элементарных частиц — устройство, предназначенное для обнаружения и измерения параметров атомных и субатомных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях.
Устаревшие
Детекторы для радиационной защиты
Детекторы для ядерной физики и физики элементарных частиц
Вспомнив опыт со своим сцинтилляционным радиометром, я сразу сказал: BGO здесь едва ли будет работать. Детектор от Atom Fast 8850 начинает надежно "видеть" гамма-кванты от 30 кэВ, а BGO имеет сцинтилляционную эффективность раз в десять хуже. Добавим сюда упавшую в разы эффективность светосбора из-за больших поперечных размеров шайбы по отношению к детектору, огромный показатель преломления BGO и конструкцию детектора, сделанную на тяп-ляп, вот и получаем порог в районе 0,5-0,6 МэВ. Его можно снизить до 150-200 кэВ при должном старании, но не более. Ищи, говорю, цезий-йод. Тем временем разобрал конструкцию, оттер SiPM от вазелинового масла, припаял поаккуратнее проводочки из МГТФа к его контактным площадкам и убрал его в надежное место...
И подходящий кристалл CsI(Tl) нашелся, причем очень удачной для SiPM геометрии. "Палочка" диаметром 20 мм и длиной 80 мм во вполне стандартном алюминиевом корпусе с окном. Тип СДН.25.20.80, "Для регистрации". Правда, нашелся он на "Авито", у широко известного в узких кругах украинского продавца. И вот прошло десять дней и сцинтиллятор уже лежал на моем столе. Кристалл, надо сказать, большого доверия не внушал: внутри имелась прослойка включений в виде нескольких черных точек и легкой вуали, окно немного отстало от кристалла по краям. Но по крайней мере, целый, не мутный, не желтый, да и другого все равно нет. Будем работать с ним.
Тут нужно пояснение, почему именно CsI(Tl), а не его "старший брат" NaI(Tl). Дело в том, что последний очень чувствителен к перепадам температуры и даже слабым ударам, приводящим к растрескиванию. CsI -- материал, обладающий определенной степенью пластичности и при небольших механических нагрузках не трескается, а деформируется. Также CsI(Tl) позволяет себя "раздеть" и переупаковать без сухой камеры с инертной атмосферой, тогда как NaI(Tl) настолько гигроскопичен, что покрывается росой и начинает расплываться уже через пару минут нахождения на воздухе. В нашем случае необходимости в переупаковке не было -- корпус детектора был вполне исправен и герметичен, а ручаться за герметичность самодельного контейнера я б не стал.
Для начала решил на скорую руку приложить к кристаллу SiPM даже без всякой оптической смазки между ним и окном -- чтобы не пачкать лишний раз. Заклеил алюминиевым скотчем и черной изолентой от внешней засветки, подключил к лабораторному БП через нагрузочное сопротивление 2,2 кОм, подключил к нему щуп осциллографа... Мнда, негусто. Конечно, небо и земля по сравнению с BGO, но сигнал от Am-241 (59 кэВ) -- около 8-10 мВ при 29,5 В. При этом засинхронизироваться от этих импульсов очень трудно: шумовые импульсы, обусловленные темновыми фотоэлектронами, лишь немного меньше полезного сигнала.
Ну что ж, для начала попробуем сделать, как положено. Заодно оценим, насколько нужны те или иные ухищрения.
Тут надо начать с того, что сам кремниевый ФЭУ -- крохотный по сравнению с его вакуумным аналогом. Размеры его входного окна -- всего 6х6 мм. И даже наш невеликий кристалл имеет площадь выходного окна в 8,7 раза больше. Обычно ФЭУ подбирают с диаметром фотокатода, совпадающим или почти совпадающим с диаметром сцинтиллятора, именно в таком случае светосбор наиболее эффективен и, что особенно важно для гамма-спектрометрии, не зависит от расположения источника света (вспышки сцинтилляции) в пространстве. В нашем же случае пришлось бы поставить мозаику как минимум из четырех кремниевых ФЭУ, что в бюджет не влезало с учетом того, что уже пришлось купить кристалл (да -- нам, ученым, иногда приходится покупать кое-что для работы из своего кармана). Спектрометрия нам тоже не требовалась, и оставалось надеяться на то, что собранного света окажется достаточно.
Как мы можем оптимизировать светосбор в нашем случае? Если не распаковывать кристалл, у нас возможностей немного. И мы ими воспользуемся.
Какие это возможности? Во-первых, мы должны устранить воздушную прослойку между кристаллом и ФЭУ. Как вы думаете, сколько излучения теряется при ее наличии? Казалось бы, немного. Коэффициент отражения на границе стекло-воздух равно ~ 4%, и можно ожидать, что потеряем мы лишь 8% света. Но это было бы верно, если бы все излучение падало бы на фотокатод перпендикулярно. Но это не так: из сцинтиллятора свет выходит под всеми углами. И при наличии прослойки часть света просто не покидает кристалл из-за полного внутреннего отражения, а излучение внутри "конуса выхода" тоже частично отражается внутрь кристалла, и чем больше угол, тем сильнее.
Для устранения воздушной прослойки кристалл и фотоприемник соединяют с помощью прозрачной оптической смазки или клея, показатель преломления которой максимально близок к показателям преломления окон кристалла и ФЭУ. В качестве смазки можно использовать прозрачное вазелиновое или силиконовое масло, винилин. Существуют также специальные оптические контактные смазки наподобие тех, что производят компании Alpha Spectra Inc и Saint Gobain (BC-631). Для приклейки применимы прозрачные силиконовые и эпоксидные компаунды. С успехом можно использовать OCA -- листовой оптический клей вроде двустороннего скотча, предназначенный для приклейки сенсора к дисплеям смартфонов. Этот материал продается во всех магазинах запчастей для их ремонта и стоит несколько десятков рублей за кусок, вырезанный по форме дисплея.
Второе, что нужно сделать -- это закрыть все пути утечки света из кристалла. И худшее, что здесь можно сделать -- это поддаться соблазну решить все по-простому и заклеить окно алюминиевым скотчем.
Дело в том, что голый алюминий отражает только 85-88% света. Отражательная способность алюминиевого скотча со стороны клея -- еще ниже, не более 60-70%. Учитывая то, что свет будет несколько раз переотражаться туда-сюда внутри кристалла, пока не попадет на фотоприемник, это очень плохие цифры. Существует ряд материалов с очень высоким коэффициентом диффузного отражения, превышающим 95% -- многослойные пластиковые пленки, синтетическая бумага Tyvek и др. Тем не менее, наиболее доступным и весьма эффективным отражателем является обыкновенная сантехническая ФУМ-лента белого цвета в несколько (4-6) слоев , покрытая сверху алюминиевой фольгой, что дает коэффициент отражения примерно 95%. SensL рекомендует для изготовления сцинтилляционных детекторов на основе SiPM именно ее. "Культурный" аналог производства Saint Gobain Crystals называется BC-642 Teflon Tape.
Фокон -- это сокращение от "фокусирующего конуса". Идея в том, что свет падает на конический или параболический рефлектор, концентрирующий свет с большой входной площадки на маленькую выходную. И такое решение действительно часто применяют в сцинтилляционных детекторах, чтобы сопрячь кристалл с ФЭУ меньшего диаметра. Но работает это решение весьма спорно.
Дело в том, что чем больше отношение входной площади фокона к выходной, тем уже конус, из которого фокон собирает свет. Свет, падающий под углом больше критического, отражается обратно. А сцинтиллятор светит во все стороны, и ограничивая угол сбора света, мы теряем его часть, так что обмануть природу не получится. В статье показано, что фоконное сопряжение не дает ничего ни для эффективности светосбора, ни для спектрального разрешения при аналогичном нашему соотношении размеров кристалла и сборки из SiPM (кристалл диаметром 2" и сборка 2х2 из MicroFC 60035).
Поскольку наш кристалл находится в стандартном контейнере с кварцевым окном в торце, нам не нужно заботиться о светоотражающем покрытии всего кристалла. Им нужно закрыть его торец, оставив в покрытии квадратное окошко по размерам SiPM, то есть 7х7 мм. Всю остальную площадь окна нужно закрыть полосками ФУМ-ленты в 5-6 слоев. Затем из алюминиевого скотча вырезать круг диаметром около 50 мм, в его центре прорезать макетным ножом такое же квадратное отверстие и наклеить его поверх ФУМ-ленты, чтобы отверстия совпали. Теперь аккуратно заворачиваем его края на цилиндрическую поверхность корпуса, максимально тщательно разглаживая и разравнивая складки, через которые может проникать свет.
В свободный от ФУМ-ленты и фольги квадратик вклеиваем SiPM с помощью квадратика, вырезанного под его размер из OCA-пленки. Сверху на него наклеиваем кусочек каптоновой пленки, чтобы не замкнуть выводы кремниевого ФЭУ фольгой, а затем заклеиваем сверху кружком из алюминиевого скотча для защиты попадания света, пропустив провода от SiPM вдоль цилиндрической поверхности кристалла и оборачиваем боковую поверхность полосой алюминиевого скотча, спрятав под ней некрасивые и могущие пропустить свет складки. Правда, первое включение показало, что этого недостаточно и детектор нормально работает только если прикрыть его от света. Поэтому я закрыл конструкцию еще одним слоем самоклеящейся фольги и пропустил провода под ним в виде петли. В окончательном варианте детектор выглядит вот так.
Результат не заставил себя ждать: амплитуда сигнала от америция возросла более чем вдвое, достигая 20 мВ, что позволяет его уверенно выделять на фоне темнового шума. Вот сколько можно потерять света только из-за того, что пара квадратных сантиметров вокруг сиФЭУ закрыта неидеальным отражателем, и из-за зазора между ним и сцинтиллятором, заполненного воздухом.
Импульсы от америция с детектора, сделанного абы как (слева) и после доработки (справа)
Показательным является то, что уровень сигнала не меняется заметно при перемещении америциевого источника вдоль кристалла. Это говорит о том, что даже при столь субоптимальном сопряжении кристалла и фэу светосбор остается относительно равномерным.
Вспомнив опыт со своим сцинтилляционным радиометром, я сразу сказал: BGO здесь едва ли будет работать. Детектор от Atom Fast 8850 начинает надежно "видеть" гамма-кванты от 30 кэВ, а BGO имеет сцинтилляционную эффективность раз в десять хуже. Добавим сюда упавшую в разы эффективность светосбора из-за больших поперечных размеров шайбы по отношению к детектору, огромный показатель преломления BGO и конструкцию детектора, сделанную на тяп-ляп, вот и получаем порог в районе 0,5-0,6 МэВ. Его можно снизить до 150-200 кэВ при должном старании, но не более. Ищи, говорю, цезий-йод. Тем временем разобрал конструкцию, оттер SiPM от вазелинового масла, припаял поаккуратнее проводочки из МГТФа к его контактным площадкам и убрал его в надежное место...
И подходящий кристалл CsI(Tl) нашелся, причем очень удачной для SiPM геометрии. "Палочка" диаметром 20 мм и длиной 80 мм во вполне стандартном алюминиевом корпусе с окном. Тип СДН.25.20.80, "Для регистрации". Правда, нашелся он на "Авито", у широко известного в узких кругах украинского продавца. И вот прошло десять дней и сцинтиллятор уже лежал на моем столе. Кристалл, надо сказать, большого доверия не внушал: внутри имелась прослойка включений в виде нескольких черных точек и легкой вуали, окно немного отстало от кристалла по краям. Но по крайней мере, целый, не мутный, не желтый, да и другого все равно нет. Будем работать с ним.
Тут нужно пояснение, почему именно CsI(Tl), а не его "старший брат" NaI(Tl). Дело в том, что последний очень чувствителен к перепадам температуры и даже слабым ударам, приводящим к растрескиванию. CsI -- материал, обладающий определенной степенью пластичности и при небольших механических нагрузках не трескается, а деформируется. Также CsI(Tl) позволяет себя "раздеть" и переупаковать без сухой камеры с инертной атмосферой, тогда как NaI(Tl) настолько гигроскопичен, что покрывается росой и начинает расплываться уже через пару минут нахождения на воздухе. В нашем случае необходимости в переупаковке не было -- корпус детектора был вполне исправен и герметичен, а ручаться за герметичность самодельного контейнера я б не стал.
Для начала решил на скорую руку приложить к кристаллу SiPM даже без всякой оптической смазки между ним и окном -- чтобы не пачкать лишний раз. Заклеил алюминиевым скотчем и черной изолентой от внешней засветки, подключил к лабораторному БП через нагрузочное сопротивление 2,2 кОм, подключил к нему щуп осциллографа... Мнда, негусто. Конечно, небо и земля по сравнению с BGO, но сигнал от Am-241 (59 кэВ) -- около 8-10 мВ при 29,5 В. При этом засинхронизироваться от этих импульсов очень трудно: шумовые импульсы, обусловленные темновыми фотоэлектронами, лишь немного меньше полезного сигнала.
Ну что ж, для начала попробуем сделать, как положено. Заодно оценим, насколько нужны те или иные ухищрения.
Тут надо начать с того, что сам кремниевый ФЭУ -- крохотный по сравнению с его вакуумным аналогом. Размеры его входного окна -- всего 6х6 мм. И даже наш невеликий кристалл имеет площадь выходного окна в 8,7 раза больше. Обычно ФЭУ подбирают с диаметром фотокатода, совпадающим или почти совпадающим с диаметром сцинтиллятора, именно в таком случае светосбор наиболее эффективен и, что особенно важно для гамма-спектрометрии, не зависит от расположения источника света (вспышки сцинтилляции) в пространстве. В нашем же случае пришлось бы поставить мозаику как минимум из четырех кремниевых ФЭУ, что в бюджет не влезало с учетом того, что уже пришлось купить кристалл (да -- нам, ученым, иногда приходится покупать кое-что для работы из своего кармана). Спектрометрия нам тоже не требовалась, и оставалось надеяться на то, что собранного света окажется достаточно.
Как мы можем оптимизировать светосбор в нашем случае? Если не распаковывать кристалл, у нас возможностей немного. И мы ими воспользуемся.
Какие это возможности? Во-первых, мы должны устранить воздушную прослойку между кристаллом и ФЭУ. Как вы думаете, сколько излучения теряется при ее наличии? Казалось бы, немного. Коэффициент отражения на границе стекло-воздух равно ~ 4%, и можно ожидать, что потеряем мы лишь 8% света. Но это было бы верно, если бы все излучение падало бы на фотокатод перпендикулярно. Но это не так: из сцинтиллятора свет выходит под всеми углами. И при наличии прослойки часть света просто не покидает кристалл из-за полного внутреннего отражения, а излучение внутри "конуса выхода" тоже частично отражается внутрь кристалла, и чем больше угол, тем сильнее.
Для устранения воздушной прослойки кристалл и фотоприемник соединяют с помощью прозрачной оптической смазки или клея, показатель преломления которой максимально близок к показателям преломления окон кристалла и ФЭУ. Об этом говорит сайт https://intellect.icu . В качестве смазки можно использовать прозрачное вазелиновое или силиконовое масло, винилин. Существуют также специальные оптические контактные смазки наподобие тех, что производят компании Alpha Spectra Inc и Saint Gobain (BC-631). Для приклейки применимы прозрачные силиконовые и эпоксидные компаунды. С успехом можно использовать OCA -- листовой оптический клей вроде двустороннего скотча, предназначенный для приклейки сенсора к дисплеям смартфонов. Этот материал продается во всех магазинах запчастей для их ремонта и стоит несколько десятков рублей за кусок, вырезанный по форме дисплея.
Второе, что нужно сделать -- это закрыть все пути утечки света из кристалла. И худшее, что здесь можно сделать -- это поддаться соблазну решить все по-простому и заклеить окно алюминиевым скотчем.
Дело в том, что голый алюминий отражает только 85-88% света. Отражательная способность алюминиевого скотча со стороны клея -- еще ниже, не более 60-70%. Учитывая то, что свет будет несколько раз переотражаться туда-сюда внутри кристалла, пока не попадет на фотоприемник, это очень плохие цифры. Существует ряд материалов с очень высоким коэффициентом диффузного отражения, превышающим 95% -- многослойные пластиковые пленки, синтетическая бумага Tyvek и др. Тем не менее, наиболее доступным и весьма эффективным отражателем является обыкновенная сантехническая ФУМ-лента белого цвета в несколько (4-6) слоев , покрытая сверху алюминиевой фольгой, что дает коэффициент отражения примерно 95%. SensL рекомендует для изготовления сцинтилляционных детекторов на основе SiPM именно ее. "Культурный" аналог производства Saint Gobain Crystals называется BC-642 Teflon Tape.
Фокон -- это сокращение от "фокусирующего конуса". Идея в том, что свет падает на конический или параболический рефлектор, концентрирующий свет с большой входной площадки на маленькую выходную. И такое решение действительно часто применяют в сцинтилляционных детекторах, чтобы сопрячь кристалл с ФЭУ меньшего диаметра. Но работает это решение весьма спорно.
Дело в том, что чем больше отношение входной площади фокона к выходной, тем уже конус, из которого фокон собирает свет. Свет, падающий под углом больше критического, отражается обратно. А сцинтиллятор светит во все стороны, и ограничивая угол сбора света, мы теряем его часть, так что обмануть природу не получится. В статье показано, что фоконное сопряжение не дает ничего ни для эффективности светосбора, ни для спектрального разрешения при аналогичном нашему соотношении размеров кристалла и сборки из SiPM (кристалл диаметром 2" и сборка 2х2 из MicroFC 60035).
Поскольку наш кристалл находится в стандартном контейнере с кварцевым окном в торце, нам не нужно заботиться о светоотражающем покрытии всего кристалла. Им нужно закрыть его торец, оставив в покрытии квадратное окошко по размерам SiPM, то есть 7х7 мм. Всю остальную площадь окна нужно закрыть полосками ФУМ-ленты в 5-6 слоев. Затем из алюминиевого скотча вырезать круг диаметром около 50 мм, в его центре прорезать макетным ножом такое же квадратное отверстие и наклеить его поверх ФУМ-ленты, чтобы отверстия совпали. Теперь аккуратно заворачиваем его края на цилиндрическую поверхность корпуса, максимально тщательно разглаживая и разравнивая складки, через которые может проникать свет.
В свободный от ФУМ-ленты и фольги квадратик вклеиваем SiPM с помощью квадратика, вырезанного под его размер из OCA-пленки. Сверху на него наклеиваем кусочек каптоновой пленки, чтобы не замкнуть выводы кремниевого ФЭУ фольгой, а затем заклеиваем сверху кружком из алюминиевого скотча для защиты попадания света, пропустив провода от SiPM вдоль цилиндрической поверхности кристалла и оборачиваем боковую поверхность полосой алюминиевого скотча, спрятав под ней некрасивые и могущие пропустить свет складки. Правда, первое включение показало, что этого недостаточно и детектор нормально работает только если прикрыть его от света. Поэтому я закрыл конструкцию еще одним слоем самоклеящейся фольги и пропустил провода под ним в виде петли. В окончательном варианте детектор выглядит вот так.
Результат не заставил себя ждать: амплитуда сигнала от америция возросла более чем вдвое, достигая 20 мВ, что позволяет его уверенно выделять на фоне темнового шума. Вот сколько можно потерять света только из-за того, что пара квадратных сантиметров вокруг сиФЭУ закрыта неидеальным отражателем, и из-за зазора между ним и сцинтиллятором, заполненного воздухом.
Импульсы от америция с детектора, сделанного абы как (слева) и после доработки (справа)
Показательным является то, что уровень сигнала не меняется заметно при перемещении америциевого источника вдоль кристалла. Это говорит о том, что даже при столь субоптимальном сопряжении кристалла и фэу светосбор остается относительно равномерным.
В физике элементарных частиц понятие «детектор» относится не только к различного типа датчикам для регистрации частиц, но и к большим установкам, созданным на их основе и включающим в себя также инфраструктуру для поддержания их работоспособности (криогенные системы, системы кондиционирования, электропитания), электронику для считывания и первичной обработки данных, вспомогательные системы (напр. сверхпроводящие соленоиды для создания внутри установки магнитного поля). Как правило, такие установки сейчас создаются большими международными группами.
Поскольку постройка большой установки требует значительных финансовых затрат и человеческих усилий, в большинстве случаев она применяется не для одной определенной задачи, а для целого спектра различных измерений. Основными требованиями, предъявляемыми к современному детектору для экспериментов на ускорителе являются:
Для специфических задач могут потребоваться дополнительные требования, например, для экспериментов, измеряющих CP-нарушение в системе B-мезонов важную роль играет координатное разрешение в области взаимодействия пучков.
Условное изображение многослойного универсального детектора для ускорителя на встречных пучках.
Необходимость выполнения этих условий приводит к типичной на сегодняшний день схеме универсального многослойного детектора. В англоязычной литературе такую схему принято сравнивать с луковицей (onion-like structure). В направлении от центра (области взаимодействия пучков) к периферии типичный детектор для ускорителя на встречных пучках состоит из следующих систем:
Трековая система предназначена для регистрации траектории прохождения заряженной частицы: координат области взаимодействия, углов вылета. В большинстве детекторов трековая система помещена в магнитное поле, что приводит к искривлению траекторий движения заряженных частиц и позволяет определить их импульс и знак заряда.
Трековая система обычно выполняется на основе газовых ионизационных детекторов или полупроводниковых кремниевых детекторов.
Система идентификации позволяет отделить друг от друга различные типы заряженных частиц. Принцип работы систем идентификации чаще всего заключается в измерении скорости пролета частицы одним из трех способов:
Совместно с измерением импульса частицы в трековой системе это дает информацию о массе, а, следовательно, и о типе частицы.
Калориметр предназначен для измерения энергии частиц путем их полного поглощения. Это единственный способ регистрации фотонов (так как они не являются заряженными и, следовательно, не оставляют следов в трековой системе). Фотоны и электроны образуют электромагнитный ливень в веществе и, таким образом, полностью поглощаются. Выделенная энергия может быть измерена либо по величине вспышки сцинтилляционного света (сцинтилляционные калориметры), либо путем подсчета частиц ливня (семплинг-калориметры).
Мюонную систему можно отнести к системе идентификации, но технически она реализуется отдельно во внешней части детектора. Чаще всего она встраивается в железо, замыкающее магнитный поток соленоида трековой системы. Мюонная система позволяет отделить мюоны по их способности проходить большие расстояния в веществе без поглощения (это является следствием того, что мюон не испытывает ядерного взаимодействия).
Подавляющее большинство дозиметров и радиометров «карманного» формата представляют собой приборы на основе счетчика Гейгера. У данного типа детектора есть свои достоинства, главные из которых — простота и дешевизна, но и целый ряд недостатков. В первую очередь это — очень низкая эффективность регистрации гамма-квантов и полное отсутствие информации об их энергии. Счетчик Гейгера фиксирует лишь один гамма-квант из нескольких сотен, тогда как сцинтилляционный детектор на низких энергиях дает почти 100% эффективность. В результате, при естественном фоне при одинаковых габаритах детекторов, когда счетчик Гейгера дает лишь 10-15 импульсов в минуту, сцинтиллятор дает столько же импульсов, но в секунду. Таким образом, чтобы получить хоть какое-то представление о мощности дозы, мы должны потратить на набор импульсов, как минимум, минуту со счетчиком Гейгера, а со сцинтиллятором можем получать информацию о радиационной обстановке ежесекундно. Так что сцинтилляционный детектор нам дает прежде всего быстроту реакции на слабые источники радиоактивности.
Кроме этого, сцинтилляционный детектор обладает свойством пропорциональности. Чем выше энергия частицы, тем больше амплитуда импульса на выходе детектора. Для чего это нужно? Во-первых, так мы получаем информацию о том, что является источником излучения. Каждый радиоактивный изотоп обладает своей характеристической энергией гамма-излучения (или набором энергий). На этом основан метод гамма-спектрометрии. В данном приборе значение средней поглощенной энергии на квант будет выводиться на экран (пока не сделано).
Во-вторых, если мы просто считаем импульсы без учета энергии, мы получаем неприятную вещь под названием «ход с жесткостью». Допустим, мы откалибровали свой радиометр по цезию-137. А потом оказались в месте, зараженном америцием-241. Энергия кванта цезия-137 — 667 кэВ, америция — 59 кэВ, то есть более чем на порядок меньше. А значит, при одинаковом количестве уловленных детектором частиц (а значит, и при одинаковых показаниях прибора) поглощенная доза окажется более чем на порядок меньше. То есть измерения окажутся ошибочными. И чтобы радиометр измерял дозу правильно при разных энергиях (то есть, был дозиметром), нужно учитывать энергию каждого зарегистрированного кванта.
Портативные сцинтилляционные радиометры-дозиметры существуют на рынке давно. Но по большей части это очень дорогостоящие приборы для профессионального использования. Я знаю только об одном приборе, ориентированном на домашнее и любительское применение — это Atom Fast производства КБ «Радар». Остальные — приборы фирмы «Полимастер», ряда зарубежных компаний — стоят очень дорого.
В данном приборе я хотел получить следующее:
В итоге получился описанный прибор. Он еще не закончен, работы еще достаточно, особенно с программным обеспечением.
Радиометр работает в одном из двух режимов: поисковом и измерительном. В поисковом режиме показания прибора обновляются каждую секунду, при этом помимо показаний в цифровом виде они выводятся в виде графика. В поисковом режиме не уделяется внимания погрешностям, в этом режиме прибор – прежде всего индикатор. На экран выводятся: текущая мощность дозы, значение скорости счета в импульсах в секунду (CPS), а также мощность дозы, усредненная за последнюю минуту и интегральная доза, накопленная после включения прибора или после сброса. В измерительном режиме, напротив, время измерения задается оператором (нажатием кнопки «Enter» для начала, а затем для окончания измерения), а на экран выводится вместе с измеренной величиной и расчетная погрешность, а в его «подвал» — мини-журнал нескольких последних измерений. Кроме того, в измерительном режиме сделана первая попытка учитывать энергию квантов и компенсировать «ход с жесткостью». Измерительный режим находится в глубоком under construction'е и в приведенной версии прошивки его пока нет.
Независимо от режима продолжается ежесекундный цикл измерений с сохранением результатов в
продолжение следует...
Часть 1 Детектор частиц, детектор элементарных частиц, детектор ионизирующего излучения , Сцинтилляционный счетчик
Часть 2 Прикладное применение - Детектор частиц, детектор элементарных частиц, детектор ионизирующего
Исследование, описанное в статье про детектор частиц, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое детектор частиц, детектор элементарных частиц, детектор ионизирующего излучения, сцинтилляционный счетчик и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Датчики и сенсоры, Технические измерения и измерительные приборы
Комментарии
Оставить комментарий
Датчики и сенсоры, Технические измерения и измерительные приборы
Термины: Датчики и сенсоры, Технические измерения и измерительные приборы