Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

3. Оптические химические сенсоры - Портативные цифровые газовые датчики .

Лекция



Это продолжение увлекательной статьи про газовые датчики.

...

среды.

Следует отметить, что в последнее время стал активно развиваться и применяться лихеноиндикационный мониторинг состояния воздушной среды [15]. Методы лихеноиндикации основаны на индивидуальной реакции различных видов лишайников к действию загрязнителей атмосферы. Растянутая во времени ответная реакция данных организмов-биоиндикаторов даже на микродозы загрязнителей, проявляющаяся в морфологических изменениях, смене видового состава и невысокая собственная изменчивость обуславливают их широкое использование в качестве биоиндикаторов состояния воздуха. Результаты лихеноиндикационных исследований дают интегральную оценку степени загрязненности воздуха за длительный промежуток времени и могут служить хорошим дополнением к санитарно-гигиенической оценке условий среды обитания. Лишайники очень чувствительны к химическим загрязнениям и могут быть хорошими индикаторами состояния окружающей среды как сами по себе, так и в качестве некоторого чувствительного элемента биосенсоров.

Если принять во внимание все разнообразие ферментов, присутствующих и действующих в живых организмах и являющихся потенциальными биологическими преобразователями, то существующее сегодня число конструкций биосенсоров может быть увеличено в десятки и даже сотни раз. Основные трудности связаны с градуировкой биосенсоров и надежностью их показаний. Для улучшения последнего показателя, в частности, может быть использована мультисенсорная система, состоящая из ряда биочипов.

В целом метрологические характеристики биосенсоров вполне приемлемы. Относительное стандартное отклонение определяемой концентрации не хуже 10-12%, при этом нижняя граница определяемых содержаний достигает 10-10-10-15 моль/л. Некоторые биосенсоры работают по принципу «да-нет», что приемлемо, в случае определения присутствия ультра малых количеств высокотоксичных веществ в объектах окружающей среды. Если определяемые компоненты находятся в сложной смеси или матрице, или близки по своим свойствам, то при анализе используются хроматографические методы разделения.

Отметим, что биосенсоры широко используются не только в химии, но также в биотехнологии, медицине и экологии. Перспективно их применение в электронной промышленности и системах безопасности, например, на транспорте (в первую очередь – на авиатранспорте), в угольной промышленности и др. Многочисленные аварии, катастрофы и теракты последних лет настоятельно требуют ускоренного внедрения перспективных научных разработок в критически важных областях жизни.

3. Оптические химические сенсоры

Оптические химические сенсоры являются одной из важнейших категорий химических сенсоров. В зависимости от типа оптических сенсоров их действие основано на следующих принципах [3-6, 9-12, 14, 16, 17]:

§ поглощения света (абсорбция);

§ отражения первичного (падающего) светового потока;

§ люминесценции.

При этом используются зависимости оптических свойств сред (коэффициентов преломления, отражения и др.) от концентраций определяемых веществ.

Рассмотрим фундаментальные явления, лежащие в основе действия оптических химических сенсоров.

Абсорбция. Способность вещества поглощать оптическое излучение зависит от строения атомов (молекул), а также от агрегатного состояния вещества, его концентрации, толщины слоя, длины волны и других факторов.

Основные законы поглощения оптического излучения, на которых основано применение эффекта абсорбции для исследования и анализа вещества – закон Бугера-Ламберта и закон Бера [11, 12, 14, 16].

Согласно первому закону, если среда однородна и ее слой толщиной l перпендикулярен монохроматическому световому потоку с интенсивностью I0, то интенсивность I прошедшего света определяется по формуле:

Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры. (2)

В формуле (2) Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры – коэффициент поглощения, который для данного вещества зависит от длины волны λ падающего монохроматического излучения. В тех случаях, когда нельзя пренебречь рассеянием света, необходимо учитывать его вклад в суммарное ослабление Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры интенсивности прошедшего через среду света: Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры.

По закону Бера каждая молекула (или атом) поглощает одинаковую часть падающего излучения, поэтому поглощение пропорционально числу частиц поглощающего вещества N:

Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры, (3)

где N – концентрация определяемого вещества; σ – сечение поглощения определяемого вещества на данной длине волны падающего излучения Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры.

Если оба закона выполняются, то справедлив объединенный закон Бугера-Ламберта-Бэра:

Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры. (4)

В случае изменения концентрации Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры исследуемого вещества вдоль пути распространения светового излучения, в расчетах используется закон Бугера-Ламберта-Бэра в интегральной форме [18]:

Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры, (5)

где P и P0 – мощность светового излучения на выходе сенсорной ячейки в присутствии и отсутствии исследуемого вещества, соответственно; L – толщина слоя исследуемой среды (соответствует, например, длине сенсорной ячейки); Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры – распределение концентрации определяемого вещества вдоль оси z (вдоль которой распространяется лазерное излучение).

Отражение. При падении потока света на границу раздела двух сред часть его излучения отражается обратно. При этом характер отражения зависит от свойств сред и размеров неровностей на границе раздела этих сред. Интенсивность отраженного света определяется электронным строением атомов, молекул и ионов в поверхностном слое вещества, процессами поглощения и многократного рассеяния в нем, а также зависит от длины волны падающего света, т.к. Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры в (2)-(5) может завесить от Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры. Это позволяет использовать эффект отражения для исследования состава и строения поверхностных слоев твердого тела и мутных сред, а также идентифицировать адсорбированные соединения.

Для исследования тонких пленок используется метод нарушенного полного внутреннего отражения, основанного на отражении, например, ИК-излучения на границе двух сред, находящихся в оптическом контакте (на расстоянии порядка действия молекулярных сил). В этом случае вещество поглощает свет характеристических длин волн и отражает в остальной части спектра.

Люминесценция. Это явление представляет собой свечение вещества, возникающее после поглощения им энергии возбуждения, и является избыточным излучением по сравнению с тепловым излучением тела при данной температуре.

Фотолюминесценция, источником которой является свет, имеет наибольшее значение для определения состава среды. Фотолюминесценцию характеризуют спектрами поглощения и люминесценции, поляризацией, энергетическим выходом (отношение энергии, излучаемой веществом в виде люминесценции к поглощенной энергии), квантовым выходом (отношение числа излученных квантов к числу поглощенных) и кинетикой.

Наиболее широко применяют анализ, основанный на фотолюминесценции возбуждаемой УФ-излучением, источником которого служат ртутно-кварцевые и ксеноновые лампы, а также – лазеры. Регистрация люминесценции производится визуально и фотоэлектрическим способом (с помощью спектрофотометра). Характеристики фотолюминесценции позволяют сделать выводы о присутствии в исследуемых образцах определенных веществ и их концентрации. Количественный анализ основан на зависимости интенсивности люминесценции от количества люминесцирующего вещества.

Чаще всего оптические химические сенсоры классифицируются в зависимости от типа принципов их действия: датчик поглощения, датчик отражения, датчик люминесценции, комбинированный датчик и др.

Строение оптических химических сенсоров. В оптических химических сенсорах работающих на физических принципах аналитический сигнал обусловлен не химическим взаимодействием определяемого компонента с чувствительным слоем, который выполняет функцию преобразователя, а измеряемым физическим параметром: интенсивностью поглощения, отражения или люминесценции света и т.д.

Оптоволоконный сенсор обычно выполнена из кварцевого стекла, пластика или стекла и окружен оптическим изолятором – оболочкой, имеющей более низкий показатель преломления, чем сердцевина. Пластиковые и стеклянные волокна гораздо дешевле, чем волокна из кварцевого стекла, однако область применения кварцевых волокон суще­ственно шире: они могут быть использованы в ультрафиолетовой области спектра, там, где остальные материалы поглощают излучение.

Используют как одиночные оптические волокна, так и пучки из многих оптических волокон. Оп­тические волокна позволяют осуществить передачу оптических сигналов на очень большие расстояния и, следовательно, идеальны дня тех случаев, когда объект анализа удален от исследователя. Кроме того, их можно изогнуть (однако угол изгиба не должен быть слишком острым), а поэтому их можно использовать в самых разнообразных оптических светочувствительных устройствах, таких, как проточные ячейки для непрерывного мониторинга.

Интегрально-оптический сенсор. Интегрально-оптические химические датчики по-нашему мнению являются наиболее перспективными среди оптических химических сенсоров [9-12, 17, 18, 19]. Принцип работы интегрально-оптических химических датчиков абсорбционного типа основан на регистрации изменения интенсивности лазерного излучения волноводной моды, распространяющейся через исследуемую газообразную или жидкую среду (находящуюся рядом с датчиком), на длинах волн, характерных для данного вещества.

На рис. 5 схематически показан поперечный разрез простого трехслойного интегрально-оптического тонкопленочного волноводного химического сенсора. Он образован тремя средами: воздухом 1, пленкой 2 и подложкой 3 с показателями преломления сред Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры, Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры и Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры соответственно. Для обеспечения направляющих свойств показатели преломления Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры сред волновода выбираются из условия: Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры > Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры > Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры.

В оптико-лучевом приближении лазерное излучение, введенное в регулярный волновод, распространяется вдоль волновода в виде плоских волн, двигающихся по зигзагообразному пути и испытывающих полное внутреннее отражение на границах волновода [9-12, 14, 16-19]. Оптическая энергия моды не ослабевает в результате интерференции волн отраженных на границах волновода, если полное изменение фазы в вертикальном направлении кратно 2π. В этом случае говорят, что выполнено резонансное условие. Напряженность поля волноводной моды в волноводном слое 2 имеет синусоидальное распределение, а в средах 1 и 3 экспоненциальное. Обычно используются локализованные ТЕ-моды, поле которых экспоненциально затухает в воздухе и подложке по мере удаления от волноводного слоя 2.

Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры

Рис. 5. Интегрально-оптический волноводный химический сенсор.

Оптическая волноводная сенсорная ячейка образована средами 1–3: 1 – покровный слой (воздух), 2 – волноводный слой (пленка); 3 – подложка; 4, 7 – вводимое и выводимое излучение лазера; 5, 6 – призмы ввода и вывода лазерного излучения; 8 – направляемая волноводная мода; 9 – исследуемая среда.

Если рядом с волноводом в воздухе (на границе раздела сред 1-2) появится газ 9 (или другая исследуемая среда, например, пар, жидкость), у которого есть характерная линия поглощения, совпадающая с длиной волны лазерного излучения, то будет наблюдаться затухание мощности волноводной моды. Именно этот эффект и лежит в основе работы интегрально-оптического химического датчика абсорбционного типа.

Волноводный слой 2 может изготавливаться из полистирола, желатины и ряда других оптически прозрачных материалов. Например, слой из Та2О5 наносится на подложку с помощью катодного распыления. Интегрально-оптический датчик может быть создан на основе диффузного волновода, изготовленного легированием PbO2 в стеклянную подложку. Толщина пленки (волноводного слоя 2), как правило, сравнима с длиной волны монохроматического света Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры и в видимом диапазоне обычно не превышает 1-5 микрометров.

Подложка 3 волновода обычно представляла собой пластинку толщиной несколько миллиметров, например, сделанную из стекла с высокой чистотой обработки поверхности (среднеквадратичная величина шероховатости поверхности менее 100 Å). Длина сенсорной ячейки интегрально-оптического химического датчика определяется расстоянием между вводом и выво­дом излучения через призменные устройства свя­зи и может варьироваться от нескольких миллиметров до метров [9-12]. Для ввода и вывода лазерного излучения используются призмы с показателем преломления большим, чем у сред 1-3 образующих волновод.

На рис. 6 приведена схема интеллектуальной цифровой измерительной системы, использованной для проверки детекторных способностей интегрально-оптического химического датчика на основе диффузного волновода, изготовленного легированием PbO2 в стеклянную подложку [12, 17, 18]. В качестве источника когерентного излучения использовался гелий-неоновый лазер 1 с длиной волны Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры = 632.8 нм, совпадающей с одной из полос поглощения аммиака. Лазерный луч разделяется полупрозрачным зеркалом 2 на опорный и сенсорный лучи. Сенсорный луч вводится в интегрально-оптическую волноводную сенсорную ячейку 3 через вводную призму под углом, который соответствует резонансному возбуждению ТЕ0-моды.

Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры

Рис. 6. Схема интеллектуальной цифровой измерительной системы с интегрально-оптичеким химическим сенсором.

Введенное в волновод излучение распространяется по волноводу (рис. 5), частично проникая в воздух, и в присутствии аммиака на выходе выводной призмы наблюдается уменьшение интенсивности сигнала, регистрируемого сенсорным фотоприемником 4. Сигнал опорного луча регистрировался вторым фотоприемником 5. В качестве фотоприемников были использованы кремниевые фотодиоды ФД-256. Эти фотодиоды предназначены для применения в качестве приемника оптического излучения в диапазоне примерно от 0,4 мкм до 1,1 мкм. Режим работы фотодиодов, как правило, фотодиодный (с внешним источником смещения). При низком отношении сигнал/шум предпочтительнее применять фотоэлектронные умножители. Сигналы с фотоприемников поступали на электронную схему сравнения 6. После аналого-цифрового преобразования сигнал регистрировался и обрабатывался компьютером 7. Для регистрации результатов экспериментов в цифровом виде может использоваться, например, виртуальная лаборатория типа «PC-LAB», возможности которой можно расширить последующей математической обработкой данных экспериментов [18, 19].

Для ввода и вывода лазерного излучения в волноводный сенсор могут использоваться как призмы, так и дифракционные решетки. Можно использовать и торцевой ввод лазерного излучения. Выбор конкретного типа волновода и способов ввода и вывода лазерного излучения в интегрально-оптический волновод определяется конструкцией сенсора, типом исследуемого вещества, а также – предъявляемыми к датчику технологическими требованиями.

Подчеркнем, что особенности работы различных интегрально-оптических сенсоров в видимом диапазоне длин волн изучены пока достаточно слабо. Нет, например, достоверных данных о взаимодействии молекул аммиака, как с поверхностью конкретного сенсора, так и с приповерхностным слоем сенсора в поле лазерного излучения волноводной моды. Хотя уже в первых работах по интегрально-оптическим датчикам отмечались возможности сложного взаимодействия детектируемого вещества и сенсора (см., например, [8, 9]). Так возможны следующие явления: изменение диэлектрической проницаемости приповерхностного слоя в момент действия детектируемого вещества (эффект может быть обратимым и необратимым), нелинейный процесс взаимодействия поля волноводной моды с детектируемым веществом, усиление детектируемого эффекта с помощью дополнительного (химико-трансдьюсерного) слоя, который содержит иммобилизированные молекулы вещества, избирательно и обратимо реагирующего на присутствие исследуемого вещества. Таким слоем может быть сам волноводный слой интегрального оптического датчика. Бесспорно, комплексное исследование всех этих явлений требует междисциплинарного подхода и достаточно трудоемких и дорогостоящих экспериментов.

Для проверки детекторных способностей интегрально-оптического химического датчика использовался газообразный аммиак.[1] Следует подчеркнуть, что проблемы производства, транспортировки, реализации и хранения аммиака на всех стадиях требуют применения высокоточных быстродействующих датчиков аммиака. В микроэлектронной промышленности аммиак образуется, например, при следующих технологических процессах: оксидирование, нанесение слоев кремния, формирование контактов и фотолитография. В частности, при фотолитографии контроль концентрации содержания в воздухе аммиака является актуальным направлением по уменьшению молекулярных загрязнителей воздуха. Важно также заметить, что аммиак является взрыво- и пожароопасным газом.

При тестировании экспериментальной установки концентрация в воздухе газообразного[2] аммиака составляла в среднем не более 200 ppm (примерно[3] 140 мг/м3).[4] Зарегистрированная в экспериментах минимальная концентрация аммиака была оценена на уровне 5 ppm при величине сигнал/шум не ниже 15. В расчетах использовалась оценка эффективного значения сечения Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры поглощения аммиака, полученная из данных экспериментов по волноводной методике измерения в диапазоне длин волн ≈ 500–750 нм [9-11].

Для примера на рис. 7 приведен один из полученных для экспериментальных условий измерения графиков зависимости коэффициента затухания волновода, обусловленный наличием газообразного аммиака Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры.

Эта зависимость характеризует минимальную чувствительность рассматриваемого интегрально-оптического датчика в зависимости от длины сенсорной ячейки L (т.е. полагается, что L равняется определенному z). Цифрой 1 на рис. 7 обозначен регистрируемый коэффициент затухания волноводной моды при наличии аддитивного случайного шума (с уровнем Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры), который рассчитывался на компьютере по известной формуле:

Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры. (6)

В выражении (6) Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры – уровень сигнала, при котором отношение сигнал/шум в среднем (от реализации к реализации случайного шума) не ниже 20.

Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры

Рис. 7. Зависимость минимальной чувствительности интегрально-оптического датчика в зависимости от длины сенсорной ячейки. Цифрой 2 на рис. 7 обозначен уровень, соответствующий концентрации газообразного аммиака в воздухе 0.1 ppm.

Как видно из рис. 7 для достижения уровня чувствительности 0.1 ppm длина сенсорной ячейки должна быть не меньше 4 см.

Для дальнейшего повышения чувствительности интегрально-оптического химического датчика могут быть использованы следующие способы [6, 9-12, 14, 17, 18-19]:

– увеличение длины сенсорной ячейки (например, использование подложки в виде цилиндрического стержня, брэгговских отражателей, резонаторов и др.);

– оптимизация параметров волноводной системы;

– увеличение отношения сигнал/шум;

– интеграция элементов датчика на единой подложке, включая источник излучения, сенсорную ячейку и фотоприемник;

– и ряд других.

Для увеличения доли мощности волноводной моды в регистрируемой среде следует использовать пленки с большим значением показателя преломления или использовать тонкий слой на поверхности волновода с оптимизированными параметрами.

Отношение сигнал/шум может быть увеличено, во-первых, путем оптимизации параметров электронной схемы сравнения и, во-вторых, уменьшением потерь в волноводной системе из-за рассеяния лазерного излучения, в частности, путем использования подложки с малой шероховатостью поверхности. При достижении предельных характеристик интегрально-оптического сенсора эта проблема будет дополнительно исследована.

Компьютерное моделирование с использованием модели турбулентной диффузии газообразного аммиака в воздухе показало, что величина минимальной концентрации, которая может быть измерена с помощью датчика рассмотренного типа, составляет примерно 0.1 ppm при эффективности ввода лазерного излучения (видимого диапазона) в волноводную сенсорную ячейку около 40%, длине сенсорной ячейки не менее 4 см и величине сигнал/шум около 20.

4. Термисторные химические сенсоры

Термистор представляет собой устройство для измерения изменений температуры. В основе его действия лежит явление уменьшения электрического сопротивления (приблизительно 4-7%/°С) оксидов металлов (ВаО/СаО, оксид переходного металла), сплавленных при высокой температуре.

Термисторы полезны для измерения температур с точностью ±0.005°С. Они могут быть разного размера и формы, но для сенсора наиболее удобен термистор в виде шарика, покрытого стеклянным защитным слоем.

Сопротивление и температуру обычно измеряют с помощью мостика Уинстона, служащего для измерения сопротивления.

Высокая чувствительность к малым изменениям температуры, которой отличаются термисторы, может быть использована для определения малых количеств теплоты, которые выделяются в ходе химической реакции. Именно так термисторы используются в микрокалориметрии, когда химические реакции изучаются в объемной фазе раствора. В применении к сенсорам требуется селективность по отношению к определяемому веществу, что достигается в результате проведения химической реакции на поверхности термистора или вблизи от нее.

Существует два основных подхода к использованию термисторов в калориметрических сенсорах. В соответствии с одним термистор помещают в ячейку детектора для измерения температурных изменений, после того как раствор аналита пропускают через слой иммобилизованного фермента. Хотя такую детекторную систему и можно приспособить для определения нескольких аналитов, для этого нужны значительные количества фермента. Второй подход заключается в иммобилизации фермента непосред­ственно на поверхности термистора. В этом случае сенсор может быть миниатюрным и его можно поместить в проточную аналитическую систему. Рассмотрим для примера два типа термисторных химических сенсоров.

Каталитические газовые сенсоры

Каталитические газовые сенсоры широко используются для определения горючих газов (метана, этана, пропана, угарного газа и водорода) и паров (бензина, органических растворителей) в воздухе.

Принцип их действия заключается в контролируемом сжигании горючего газа в воздухе и измерении количества выделяющегося при этом тепла. В целях ускорить получение отклика используют катализаторы. Таким образом, для каталитического газового сенсора нужны нагреватель для поддержания температуры, достаточной для сжигания газа, катализатор окислительного процесса и устройство для измерения теплоты сгорания. Обычно в качестве нагревателя используют спираль из проволоки, а зависимость сопротивления этой проволоки от температуры используют для измерения выделяющегося тепла [2, 4].

В первом каталитическом газо­вом сенсоре применялась платиновая спираль, которую нагревали, пропуская через нее ток, до температуры горе­ния газа на поверхности платины. Выделение тепла приводило к нагреванию спирали и, следовательно, к увеличению ее сопротивления. По изменению темпера­туры определялось количество сгоревшего газа.

Как катализатор, платина проигрывает другим метал­лам, таким как палладий и родий: при использо­вании платины нужны гораздо более высокие температу­ры (1000°С), что приводит к существенной потере плати­ны и уменьшению толщины проволоки.

Потребность в других формах каталитических газовых сенсоров привела к созданию пеллисторов. Пеллистор представляет собой газовый сенсор, основанный на том же принципе, что и предыдущий, то есть в нем тоже использована платиновая спираль в качестве нагревающего элемента и резистивный термометр в качестве температурного датчика. Отличие заключается в том, что качестве катализатора в этом случае используют палладий в виде тонкоизмельченного порошка, что позволяет увеличить площадь поверхности и существенно повысить эффективность катализатора. Таким образом, катализатор окисления в этом сенсоре гораздо эффективнее [4]. Это позволяет применять сенсор при температурах около 500°С, то есть для определения углеводородов типа метана.

Схема пеллистора представлена на рис. 3. Платиновая спираль в этом сенсоре заключена в огнеупорный шарик размером около 1 мм. Поверхность шарика покрыта слоем тонкодисперсного палладия в матрице из оксида тория [4].

Электроника для измерительных систем может действовать в режиме обратной связи. В этом случае ток для нагревания платиновой проволоки уменьшают в целях компенсировать рост температуры, вызванный горением. При этом сила токаПортативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсорыПортативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсорыПортативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры является измеряемым параметром, свя­занным с изменением температуры, вызванным горением газа, и, следовательно, с количеством газа.

Портативные цифровые  газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры

Рис. 3. Схема пеллистора.

Проблемой использования газовых сенсоров является то, что они подвержены отравляющему действию других газов, что ведет к потере селективности сенсоров. Для решения этой проблемы разрабатываются пеллисторы и сенсорные системы с более низкой восприимчивостью по отношению к отравляющим сенсоры веществам.

Наилучшим выходом оказалась конструкция пеллистора, в которой платиновую спираль окружает пористый алюминиевый шарик, содержащий большое количество тонко измельченного катализатора. В этом случае доступная площадь поверхности катализатора существенно повышается, но зато падает механическая

продолжение следует...

Продолжение:


Часть 1 Портативные цифровые газовые датчики . электрохимические аналоговые чувствительные элементы. Электрохимические сенсоры, биосенсоры оптические химические сенсоры
Часть 2 3. Оптические химические сенсоры - Портативные цифровые газовые датчики .
Часть 3 аналоговый электрохимический преобразователь - Портативные цифровые газовые датчики . электрохимические
Часть 4 - Портативные цифровые газовые датчики . электрохимические аналоговые чувствительные элементы.

создано: 2020-04-04
обновлено: 2024-11-10
40



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Датчики и сенсоры, Технические измерения и измерительные приборы

Термины: Датчики и сенсоры, Технические измерения и измерительные приборы