Лекция
Сразу хочу сказать, что здесь никакой воды про первичные источники питания, и только нужная информация. Для того чтобы лучше понимать что такое первичные источники питания, батарейка, аккумулятор, батарейки, аккумуляторы, солнечные батареи, атомные батареи, дизельгенераторы , настоятельно рекомендую прочитать все из категории Источники питания радиоэлектронной аппаратуры.
Любые радиотехнические устройства и системы с точки зрения обеспечения электрической энергией могут быть представлены в виде схемы, приведенной на рисунке 1.
Рисунок 1. Структурная схема питания радиоэлектронных устройств
На этом рисунке обозначено: ПИП — первичный источник питания — преобразует неэлектрические виды энергии в электрическую; ВИП — вторичный источник питания — преобразует электрическую энергию к виду удобному для потребителя (нагрузки) и собственно нагрузка — радиоэлектронная аппаратура (РЭА).
Рисунок классификация источников питания, первичные и сторичные источники питания
Источники питания. Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
В – значок электричества, отображающий переменное напряжение.
С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
D – Отображение аккумулятор ного или гальванического источника питания.
E- Символ батареи, состоящей из нескольких элементов питания.
Для автономного питания радиоэлектронной аппаратуры широко используют электрохимические источники тока — гальванические элементы и аккумуляторы . Буквенный код элементов питания — G. УГО [11] напоминает символ конденсатора постоянной емкости — параллельные линии разной длины: короткая обозначает отрицательный полюс, длинная — положительный (рис. 12.1, G1). Знаки полярности на схемах можно не указывать.
Поскольку для питания приборов чаще всего требуется напряжение, большее того, что обеспечивает один элемент или аккумулятор, их соединяют в батарею. Буквенный код в этом случае — GB. Батарею обозначают упрощенно: изображают только крайние элементы, а наличие остальных показывают штриховой линией (см. рис. 12.1, GB1). ГОСТ допускает изображать батарею и совсем просто — символом одного элемента (GB2 на рис. 12.1). Рядом с позиционным обозначением в любом случае указывают напряжение батареи.
Отводы от части элементов показывают линиями электрической связи, продолжающими черточки, которые обозначают их положительные полюсы (см. рис. 12.1, GB3). В местах присоединения линий-отводов к символам положительных полюсов ставят точки.
На основе символа электрохимического элемента строятся УГО так называемых солнечных фотоэлементов и батарей. Отличительные признаки УГО этих источников тока — корпус в виде кружка или овала и знак фотоэлектрического эффекта (см. рис. 12.1, G2, GB4), На месте буквы п в УГО солнечной батареи можно указывать число образующих ее элементов.
Для защиты от перегрузок по току или коротких замыканий в нагрузке в электронных устройствах часто используют плавкие предохранители. Код этих устройств — латинские буквы FU. УГО [12] напоминает постоянный резистор (и имеет те же размеры 4x10 мм), отличие заключается только в проходящей через весь прямоугольник линии, символизирующей сгорающую при перегрузке металлическую нить (рис. 12.2, FU1). Рядом с УГО предохранителя, как правило, указывают ток, на который он рассчитан, а иногда и его тип.
В аппаратуре с высоковольтным питанием для защиты некоторых элементов от опасных для них перенапряжений применяют разрядники (код — буква F). В простейшем случае — это два электрода, установленных на изоляционном основании на определенном расстоянии один от другого (иногда технологически это печатный проводник, разделенный на две части просечкой в печатной плате насквозь). Символ искрового промежутка — две встречно направленные стрелки (см. рис. 12.2, F1). Если же такое устройство выполнено в виде самостоятельного изделия, используют УГО, показанное на рис. 12.2 под позиционным обозначением F2. УГО вакуумного разрядника получают, заключая символ искрового промежутка в символ баллона электровакуумного прибора (F3).
Это сухие гальванические элементы, кислотные и щелочные аккумуляторы. Наибольшее распространение получили кислотные аккумуляторные батареи (АБ). Типовые зарядно-разрядные характеристики одного кислотного элемента приведены на рисунке 2.
Рисунок 2. Зарядно–разрядные характеристики кислотного элемента
В процессе разряда напряжение быстро уменьшается до 2 В, а затем медленно спадает до 1,8 В. Разряд ниже 1,8 В на один элемент нежелателен, так как в нем начинаются необратимые процессы. Номинальным считается напряжение U = 2 В.
При заряде кислотного аккумулятора его напряжение быстро растет до 2,1 ... 2,15 В, а затем медленно до 2,4 В, т.е. восстановление активной массы аккумулятора закончено и начинается бурное выделение кислорода и водорода, заряд окончен. Об этом говорит сайт https://intellect.icu . Для герметичных аккумуляторов это недопустимо, поэтому их помещают в специальный, прочный корпус «панцирь», выдерживающий высокое давление, добавляют газопоглотители и строго выдерживают режим заряда. Номинальная емкость аккумулятора — количество электричества, которое может отдать аккумулятор при 10-часовом режиме разряда (С10), неизменном токе и температуре.
Работа солнечных батарей основана на вентильном фотоэффекте в полупроводниках (фото–ЭДС на p–n переходе). Под действием света электроны переходят на более высокий энергетический уровень, поддерживая ток во внешней цепи. Спектральные характеристики некоторых источников приведены на рисунке 3.
Рисунок 3. Спектральные характеристики солнечного света и солнечных батарей
Максимальная чувствительность кремниевого (Si) фотоэлемента находится на границе инфракрасного (ИК) излучения (). Селеновые (Se) фотоэлементы лучше согласуются по длине волны с солнечным светом и охватывают видимую часть спектра (0,4 мкм — фиолетовый цвет, 0,55 мкм — зеленый, 0,65 мкм — красный), что не всегда удобно. Поэтому используют кремний, который значительно шире распространен на земле.
Известно, что энергетическая освещенность Земли в солнечной системе составляет примерно 1 кВт/м2, но это на экваторе. В средних широтах около 300 Вт/м2, но это летом, а зимой примерно 80 Вт/м2. Извлечь эту энергию можно при помощи кремниевых фотоэлементов с коэффициентом полезного действия 12 ... 15% (теоретический КПД равен 22,5%, у арсенид–галиевых фотоэлементов теоретический КПД — 33,3%). Для получения 5В, 40мА требуется около 12 ... 15 фотоэлементов, поэтому о больших мощностях для промышленности речи пока не идет. Их используют на космических летательных аппаратах с поверхностью солнечных батарей в сотни квадратных метров, а также для зарядки АБ в местах, удаленных от населенных пунктов.
Существует мнение, что солнечная энергия является экзотической и ее практическое использование — дело отдаленного будущего. Стоимость солнечных элементов составляет 2,5 ... 3 долл/Вт, а стоимость электроэнергии 0,25 ... 0,5 долл/кВт•ч. При использовании солнечных батарей возникает проблема суточного и сезонного накопления энергии, которая решается с помощью АБ.
Топливные элементы преобразуют энергию химического топлива в электрическую энергию, без реакции горения. Действие этих элементов основано на электрохимическом окислении углеводородного топлива (водород, пропан, метан, керосин) в среде окислителя. Другими словами Топливные элементы представляют собой "неистощимые батарейки ", к которым непрерывно подводится топливо и окислитель (воздух).
Различают следующие основные типы топливных элементов:
Топливные элементы имеют разную рабочую температуру и у каждого своя область применения.
Поскольку напряжение и ток единичного топливного элемента невелики 0,6 ... 0,75 В при плотности тока до 500 мА/см2, то для получения заданных характеристик топливные элементы соединяют в батареи. Для постоянного получения электроэнергии следует в батарею непрерывно подводить окислитель и топливо.
Топливные элементы отличает высокая надежность (нет подвижных частей как в двигателе внутреннего сгорания) и термостабильность, а удельная энергия вдвое выше, чем у аккумуляторных батарей. По этой причине современные электромобили используют именно топливные элементы.
Работа термогенераторов основана на термоэлектрическом эффекте — нагреве контакта двух проводников или полупроводников, что приводит к появлению на их свободных (холодных) концах ЭДС, называемой термо–ЭДС. Величина этой термо–ЭДС , где — разность температур холодного и горячего концов термопары, — коэффициент термо-ЭДС, зависящий от материала термопары. Термоэлементы соединяют последовательно в батареи. На рисунке 4 приведена обобщенная схема термобатареи, а на рисунке 5 — зависимость термо–ЭДС некоторых термопар от температуры.
Рисунок 4. Обобщенная схема термобатареи
Рисунок 5. Зависимость термо–ЭДС некоторых термопар от температуры
На этом рисунке приведена величина термо–ЭДС термопар: 1 — Платина и медь; 2 — Платина и железо; 3 — Медь и железо. Из зависимостей термо-ЭДС, приведенных на рисунке 5 видно, что величины термо–ЭДС довольно малы, а создать большую разность температур для металлов проблематично из-за их высокой теплопроводности, поэтому чаще используют полупроводники с ЭДС около 1мв/°C. Современные термогенераторы выпускают на напряжение до 150 В и ток до 500 А при общем КПД порядка10 ... 12%.
Рисунок 6. Внешний вид термобатареи
Принцип построения атомных батарей известен из курса общей физики. Одним из электродов является радиоактивный изотоп, вторым электродом служит металлическая оболочка. Под действием излучения на электродах создается разность потенциалов в несколько киловольт при токе единицы миллиампер. Срок службы атомных элементов — несколько лет. В настоящее время созданы низковольтные атомные батареи, работающие по принципу фотоэлементов, причем их излучение не превышает уровня общего фона.
Рисунок 7. Низковольтная атомная батарея: 1 — радиоактивный изотоп; 2 — полупроводник; 3 — отрицательный электрод; 4 — нагрузка, потребитель энергии
Рассмотрим принцип работы низковольтной атомной батареи. На поверхности полупроводника наносится слой радиоактивного вещества, излучаемый этим слоем, поток бета частиц бомбардирует атомы полупроводника, выбивая из него очень большое количество медленных электронов.Так как выбитые электроны могут двигаться только в одном направлении, они накапливаются на металлическом коллекторе, приваренном к другой стороне полупроводника и образующим с полупроводником контакт Шотки, обладающий односторонней проводимостью. Между коллектором и полупроводником возникает разность потенциалов. Для повышения кпд батареи часто вместо чистого полупроводника используют p-n переход в качестве контакта с односторонней проводимостью. Также существуют батареи использующие для генерации электронов эффект термоэлектронной эмиссии, так называемые термоэмиссионные генераторы. Принцип действия таких батарей аналогичен работе высоковольтных атомных батарей, описанных выше. В данных батареях используются изотопы, ядерные реакции в которых приводят к разогреву катода. Горячий катод испускает медленные электроны, которые, достигая анод, заряжают его отрицательно, в то время как катод заряжается положительно.Одним из веских оснований к применению данных источников энергии служит ряд преимуществ перед другими источниками энергии (практическая необслуживаемость, компактность и др), и решающим основанием явилась громадная энергоемкость изотопов. Практически по массовой и объемной энергоемкости распад используемых изотопов уступает лишь делению ядер урана, плутония и др в 4-50 раз, и превосходит химические источники энергии (аккумуляторы, топливные элементы и др.) в десятки и сотни тысяч раз.
Рисунок 8. Внешний вид миниатюрного ядерного элемента питания
Большинство современных ядерных батарей используют для сбора частиц полупроводники. Увы, но со временем «ловушка» приходит в негодность. Ученые из Университета Миссури заменили твердый полупроводник жидким, что и позволило не только сделать батарею миниатюрной, но и долговечной. Ее внешний вид приведен на рисунке 9.
Рисунок 9. Внешний вид миниатюрного ядерного элемента питания
Экспериментальные образцы батарей на никеле-63
Тритиевая атомная батарейка
Преобразуют механическую энергию движения (поступательного или вращательного) в электрическую и наоборот. Выпускаются на большой диапазон токов и напряжений. Электрические машины делятся на электрические машины постоянного и переменного тока. При одинаковой мощности электрические машины переменного тока имеют в 1,5 ... 2 раза лучшие массо-объемные показатели, чем машины постоянного тока. Поэтому 98% электроэнергии в мире вырабатывается электрическими машинами переменного тока. Их недостатками считается присутствие акустических шумов, а наличие подвижных частей определяет надежность системы электроснабжения. Но инерционность электрических машин делает невозможными кратковременные провалы напряжения сети, что положительно сказывается на качестве электроснабжения.
В зависимости от того, чем вращают генератор переменного тока различают:
Рисунок 10. Внешний вид дизель-генераторной установки
Дизель-генераторные установки обычно обладают большей мощностью и применяются для электропитания крупных предприятий связи, в составе которых применяется более энергопотребляющая радиоэлектронная аппаратура.
Рисунок 11. Внешний вид бензогенератора
Бензогенераторы могут применяться для гарантированного электроснабжения базовых станций сотовых систем связи, ретрансляторов, ремонтных служб или автомастерских.
Литература:
Пожалуйста, пиши комментарии, если ты обнаружил что-то неправильное или если ты желаешь поделиться дополнительной информацией про первичные источники питания Надеюсь, что теперь ты понял что такое первичные источники питания, батарейка, аккумулятор, батарейки, аккумуляторы, солнечные батареи, атомные батареи, дизельгенераторы и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Источники питания радиоэлектронной аппаратуры
Комментарии
Оставить комментарий
Источники питания радиоэлектронной аппаратуры
Термины: Источники питания радиоэлектронной аппаратуры