Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Введение в Нейронные сети

Лекция



Привет, Вы узнаете о том , что такое нейронные сети, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое нейронные сети , настоятельно рекомендую прочитать все из категории Искусственный интеллект. Основы и история. Цели..

Теория искусственных нейронных сетей включает в себя большой спектр вопросов из разных областей науки: биофизики, информатики, математики,схемотехники и т. д. Дадим следующее определение:

Искусственные нейронные сети – это совокупность моделей биологических нейронных сетей.  Нейронные сети представляют собой совокупность элементов, связанных между собой синаптическими связями. Сеть обрабатывает входную информацию и в процессе изменения своего внутреннегосостоянияво времени формирует выходные воздействия.

Широкий интерес к нейронным сетям был инициирован после появления работы Хопфилда (Hopfield J.J., 1982), который показал, что задача сизинговскими нейронами может быть сведена к обобщениям ряда моделей, разработанных к тому моменту в физике неупорядоченных систем. Работа сети Хопфилда (наиболее подробно обсуждаемая в физической литературе) состоит в релаксации начального "спинового портрета" матрицы двоичных кодов к одному из стационарных состояний, определяемых правилом обучения (правилом Хебба). Таким образом, данная сеть может применяться для задач распознавания.

В 1986 году появилась работа Румельхарта, Хинтона и Вильямса (Rumelhart D.E., Hinton G.E., Williams R.J., 1986), содержавшая ответ на вопрос, долгое время сдерживавший развитие нейроинформатики - как обучаются иерархические слоистые нейронные сети, для которых "классиками" еще в 40-50 хгодах была доказана универсальнось для широкого класса задач. В последующие годы предложенный Хинтоном алгоритм обратного распространения ошибок претерпел бесчисленное множество вариаций и модификаций.

Многообразие предлагаемых алгоритмов, характеризующихся различной степенью детальности проработки, возможностями их параллельной реализации, а также наличием аппаратной реализации, приводит к особой актуальности исследования по сравнительным характеристикам различных методик.

Выделим основные характерные черты искусственных нейронных сетей:

  • Гибкая модель для аппроксимации многомерных функций.
  • Средство прогнозирования во времени процессов , зависящих от большого количества переменных.
  • Средство распознавания образов
  • Инструмент для поиска по ассоциациям
  • Модель для поиска закономерностей в массивах данных

 

 

Биологический нейрон.

Центральная нервная система имеет клеточное строение. Об этом говорит сайт https://intellect.icu . Единица – нервная клетка, нейрон. Нейрон имеет следующие основные свойства:

1. Участвует в обмене веществ и рассеивает энергию. Меняет внутреннее состояние с течением времени, реагирует на входные сигналы и формирует выходные воздействия и поэтому является активной динамической системой.

2. Имеет множество синапсов – контактов для передачи информации.

3. Нейрон взаимодействует путем обмена электрохимическими сигналами двух видов: электротоническими (с затуханием) и нервными импульсами (спайками), распространяющимися без затухания.

Биологический нейрон содержит следующие структурные единицы:

Тело клетки (т) — сома: содержит ядро (я), митохондрии (обеспечивают клетку энергией), другие органеллы, поддерживающие жизнедеятельность клетки.

Дендриты (д) – входные волокна, собирают информацию от других нейронов. Активность в дендритах меняется плавно. Длина их обычно не больше 1 мм.

Мембрана – поддерживает постоянный состав цитоплазмы внутри клетки, обеспечивает проведение нервных импульсов.

Цитоплазма — внутренняя среда клетки. Отличается концентрацией ионов K+, Na+, Ca++ и других веществ по сравнению с внеклеточной средой.

Аксон (а), один или ни одного у каждой клетки, – длинное, иногда больше метра, выходное нервное волокно клетки. Импульс генерируется в аксонномхолмике (а.х.). Аксон обеспечивает проведение импульса и передачу воздействия на другие нейроны или мышечные волокна (мв). Ближе к концу аксон часто ветвится.

Синапс (с) – место контакта нервных волокон — передает возбуждение от клетки к клетке. Передача через синапс почти всегда однонаправленная. Различают пресинаптические и постсинаптические клетки — по направлению передачи импульса.

Шванновские клетки (шв.кл). Специфические клетки, почти целиком состоящие из миелина, органического изолирующего вещества. Плотно "обматывают" нервное волокно 250 слоями миелина. Неизолированные места нервного волокна между шванновскими клетками называются перехватами Ранвье (пР). За счет миелиновой изоляции скорость распространения нервных импульсов возрастает в 5*10 раз и уменьшаются затраты энергии на проведение импульсов. Миелинизированные волокна встречаются только у высших животных. В центральной нервной системе человека насчитывается от 100 до 1000 типов нервных клеток, в зависимости выбранной степени детализации. Они отличаются картиной дендритов, наличием и длиной аксона и распределением синапсов около клетки. Клетки сильно связаны между собой. У нейрона может быть больше 1000 синапсов. Близкие по функциям клетки образуют скопления, шаровидные или параллельные слоистые. В мозгу выделены сотни скоплений. Кора головного мозга – тоже скопление. Толщина коры — 2 мм, площадь — около квадратного фута.

Нервный импульс (спайк) – процесс распространения возбуждения по аксону от тела клетки (аксонного холмика) до окончания аксона. Это основная единица информации, передаваемая по волокну, поэтому модель генерации и распространения нервных импульсов (НИ) — одна из важнейших в теории НС.

Импульсы по волокну передаются в виде скачков потенциала внутриклеточной среды по отношению к внешней среде, окружающей клетку. Скорость передачи – от 1 до 100 м/с. Для миелинизированных волокон скорость передачи примерно в 5 – 10 раз выше, чем для немиелинизированных. При распространении форма спайка не меняется. Импульсы не затухают. Форма спайка фиксирована, определяется свойствами волокна и не зависит от того, каким способом создан импульс.

 

Биологическая нейронная сеть

В человеческом мозге нейроны объединяются в сети, причем можно выделить три слоя: сенсорный, решающий и моторный. Сенсорный слой – принимает информацию с сетчатки глаз, тактильных рецепторов и т. д., по сути – принимает информацию с датчиков, затем происходит первичная обработка и пересылка информации в головной мозг.  

Выводы из данной статьи про нейронные сети указывают на необходимость использования современных методов для оптимизации любых систем. Надеюсь, что теперь ты понял что такое нейронные сети и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Искусственный интеллект. Основы и история. Цели.

Из статьи мы узнали кратко, но содержательно про нейронные сети
создано: 2016-05-05
обновлено: 2024-11-14
114



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Искусственный интеллект. Основы и история. Цели.

Термины: Искусственный интеллект. Основы и история. Цели.