Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Корреляционный анализ - Статистика и обработка данных в психологии

Лекция



Это окончание невероятной информации про обработка данных в психологии.

...

бы в одном случае теоретическая частота равна 0 (Siegel, 1956).

Критерий знаков (биномиальный критерий)

Критерий знаков — это еще один непараметрический метод, позволяющий легко проверить, повлияла ли независимая переменная на выполнение задания испытуемыми, при этом методе сначала подсчитывают число испытуемых, у которых результаты снизились, а затем сравнивают его с тем числом, которого можно было ожидать на основе чистой случайности (в нашем случае вероятность случайного события 1:2). Далее определяют разницу между этими двумя числами, чтобы выяснить, насколько она достоверна.

При подсчетах результаты, свидетельствующие о повышении эффективности, берут со знаком плюс, а о снижении — со знаком минус; случаи отсутствия разницы не учитывают.

Расчет ведется по следующей формуле:

Статистика и обработка данных в психологии

где Х — сумма «плюсов» или сумма «минусов»;

п/2 — число сдвигов в ту или в другую сторону при чистой случайности один шанс из двух. (Такая вероятность характерна, например, для п бросаний монеты. В случае же если п раз бросают игральную кость, то вероятность выпадения той или иной грани уже равна одному шансу из 6 (п/6))

0,5 — поправочный коэффициент, который добавляют к X, если X<п/2, или вычитают, если X>п/2.

Если мы сравним в нашем опыте результативность испытуемых до воздействия (фон) и после воздействия, то получим

Опытная группа

Фон: 12 21 10 15 15 19 17 14 13 11 20 15 15 14 17
После воздействия: 8 20 6 8 17 10 10 9 7 8 14 13 16 11 12
Знак: - - - - + - - - - - - - + - -

 

Итак, в 13 случаях результаты ухудшились, а в 2 — улучшились. Теперь нам остается вычислить Z для одного из этих двух значений X:

Статистика и обработка данных в психологии

Из таблицы значений Z можно узнать, что Z для уровня значимости 0,05 составляет 1,64. Поскольку полученная нами величина Z оказалась выше табличной, нулевую гипотезу следует отвергнуть; значит, под действием независимой переменной глазодвигательная координация действительно ухудшилась.

Критерий знаков особенно часто используют при анализе данных, получаемых в исследованиях по парапсихологии. С помощью этого критерия легко можно сравнить, например, число так называемых телепатических или психокинетических реакций (X) с числом сходных реакций, которое могло быть обусловлено чистой случайностью (п/2).

Другие непараметрические критерии

Существуют и другие непараметрические критерии, позволяющие проверять гипотезы с минимальным количеством расчетов.

Критерий ранговпозволяет проверить, является ли порядок следования каких-либо событий или результатов случайным, или же он связан с действием какого-то фактора, не учтенного исследователем. С помощью этого критерия можно, например, определить, случаен ли порядок чередования мужчин и женщин в очереди. В нашем опыте этот критерий позволил бы узнать, не чередуются ли плохие и хорошие результаты каждого испытуемого опытной группы после воздействия каким-то определенным образом или не приходятся ли хорошие результаты в основном на начало или конец испытаний.

При работе с этим критерием сначала выделяют такие последовательности, в которых подряд следуют значения меньше медианы, и такие, в которых подряд идут значения больше медианы. Далее по таблице распределения (от англ, runs-последовательности) проверяют, обусловлены ли эти различные последовательности только случайностью.

При работе с порядковыми данными используют такие непараметрические тесты, как тест U (Манна-Уитни) и тест Т Вилкоксона. Тест позволяет проверить, существует ли достоверная разница между двумя независимыми выборками после того, как сгруппированные данные этих выборок классифицируются и ранжируются и вычисляется сумма рангов для каждой выборки. Что же касается критерия Т, то он используется для зависимых выборок и основан как на ранжировании, так и на знаке различий между каждой парой данных.Такие данные чаще всего получаются при ранжировании количественных данных, которые нельзя обработать с помощью параметрических тестов.

Чтобы показать применение этих критериев на примерах, потребовалось бы слишком много места. При желании читатель может подробнее ознакомиться с ними по специальным пособиям.

 

Корреляционный анализ

При изучении корреляций стараются установить, существует ли какая-то связь между двумя показателями в одной выборке (например, между ростом и весом детей или между уровнем IQ и школьной успеваемостью) либо между двумя различными выборками (например, при сравнении пар близнецов), и если эта связь существует, то сопровождается ли увеличение одного показателя возрастанием (положительная корреляция) или уменьшением (отрицательная корреляция) другого.

Иными словами, корреляционный анализ помогает установить, можно ли предсказывать возможные значения одного показателя, зная величину другого.

До сих пор при анализе результатов нашего опыта по изучению действия марихуаны мы сознательно игнорировали такой показатель, как время реакции. Между тем было бы интересно проверить, существует ли связь между эффективностью реакций и их быстротой. Это позволило бы, например, утверждать, что чем человек медлительнее, тем точнее и эффективнее будут его действия и наоборот.

С этой целью можно использовать два разных способа: параметрический метод расчета коэффициента Браве-Пирсона (r) и вычисление коэффициента корреляции рангов Спирмена (rs), который применяется к порядковым данным, т.е. является непараметрическим. Однако разберемся сначала в том, что такое коэффициент корреляции.

Коэффициент корреляции

Коэффициент корреляции — это величина, которая может варьировать в пределах от +1 до -1. В случае полной положительной корреляции этот коэффициент равен плюс 1, а при полной отрицательной — минус 1. На графике этому соответствует прямая линия, проходящая через точки пересечения значений каждой пары данных:

Статистика и обработка данных в психологии

 

Статистика и обработка данных в психологии

В случае же если эти точки не выстраиваются по прямой линии, а образуют «облако», коэффициент корреляции по абсолютной величине становится меньше единицы и по мере округления этого облака приближается к нулю:

Статистика и обработка данных в психологии

В случае если коэффициент корреляции равен 0, обе переменные полностью независимы друг от друга.

В гуманитарных науках корреляция считается сильной, если ее коэффициент выше 0,60; если же он превышает 0,90, то корреляция считается очень сильной. Однако для того, чтобы можно было делать выводы о связях между переменными, большое значение имеет объем выборки: чем выборка больше, тем достовернее величина полученного коэффициента корреляции. Существуют таблицы с критическими значениями коэффициента корреляции Браве-Пирсона и Спирмена для разного числа степеней свободы (оно равно числу пар за вычетом 2, т. е. n-2). Лишь в том случае, если коэффициенты корреляции больше этих критических значений, они могут считаться достоверными. Так, для того чтобы коэффициент корреляции 0,70 был достоверным, в анализ должно быть взято не меньше 8 пар данных (h=n-2=6) при вычислении r (см. табл. 4 в Приложении) и 7 пар данных (h=n-2=5) при вычислении rs (табл. 5 в Приложении).

Хотелось бы еще раз подчеркнуть, что сущность этих двух коэффициентов несколько различна. Отрицательный коэффициент r указывает на то, что эффективность чаще всего тем выше, чем время реакции меньше, тогда как при вычислении коэффициента rs требовалось проверить, всегда ли более быстрые испытуемые реагируют более точно, а более медленные — менее точно.

Коэффициент корреляции Браве-Пирсона (r) — этопараметрический показатель, для вычисления которого сравнивают средние и стандартные отклонения результатов двух измерений. При этом используют формулу (у разных авторов она может выглядеть по-разному)

Статистика и обработка данных в психологии

где ΣXY — сумма произведений данных из каждой пары; 
n-число пар;
X — средняя для данных переменной X;
Y— средняя для данных переменной Y
Sx — 
стандартное отклонение для распределения х;
Sy — 
стандартное отклонение для распределения у

Коэффициент корреляции рангов Спирмена (rs— это непараметрический показатель, с помощью которого пытаются выявить связь между рангами соответственных величин в двух рядах измерений.

Этот коэффициент рассчитывать проще, однако результаты получаются менее точными, чем при использовании r. Это связано с тем, что при вычислении коэффициента Спирмена используют порядок следования данных, а не их количественные характеристики и интервалы между классами.

Дело в том, что при использовании коэффициента корреляции рангов Спирмена (rs) проверяют только, будет ли ранжирование данных для какой-либо выборки таким же, как и в ряду других данных для этой выборки, попарно связанных с первыми (например, будут ли одинаково «ранжироваться» студенты при прохождении ими как психологии, так и математики, или даже при двух разных преподавателях психологии?). Если коэффициент близок к +1, то это означает, что оба ряда практически совпадают, а если этот коэффициент близок к -1, можно говорить о полной обратной зависимости.

Коэффициент rs вычисляют по формуле

Статистика и обработка данных в психологии

где — разность между рангами сопряженных значений признаков (независимо от ее знака), а — число пар.

Обычно этот непараметрический тест используется в тех случаях, когда нужно сделать какие-то выводы не столько об интервалах между данными, сколько об их рангах, а также тогда, когда кривые распределения слишком асимметричны и не позволяют использовать такие параметрические критерии, как коэффициент r (в этих случаях бывает необходимо превратить количественные данные в порядковые).

Резюме

Итак, мы рассмотрели различные параметрические и непараметрические статистические методы, используемые в психологии. Наш обзор был весьма поверхностным, и главная задача его заключалась в том, чтобы читатель понял, что статистика не так страшна, как кажется, и требует в основном здравого смысла. Напоминаем, что данные «опыта», с которыми мы здесь имели дело, — вымышленные и не могут служить основанием для каких-либо выводов. Впрочем, подобный эксперимент стоило бы действительно провести. Поскольку для этого опыта была выбрана сугубо классическая методика, такой же статистический анализ можно было бы использовать во множестве различных экспериментов. В любом случае нам кажется, что мы наметили какие-то главные направления, которые могут оказаться полезны тем, кто не знает, с чего начать статистический анализ полученных результатов.

Литература

  1. Годфруа Ж. Что такое психология. — М., 1992.
  2. Chatillon G., 1977. Statistique en Sciences humaines, Trois-Rivieres, Ed. SMG.
  3. Gilbert N.. 1978. Statistiques, Montreal, Ed. HRW.
  4. Moroney M.J., 1970. Comprendre la statistique, Verviers, Gerard et Cie.
  5. Siegel S., 1956. Non-parametric Statistic, New York, MacGraw-Hill Book Co.

Приложение. Таблицы

Примечания. 1) Для больших выборок или уровня значимости меньше 0,05 следует обратиться к таблицам в пособиях по статистике.

2) Таблицы значений других непараметрических критериев можно найти в специальных руководствах (см. библиографию).

Таблица 1. Значения критерия Стьюдента
h 0,05
1 6,31
2 2,92
3 2,35
4 2,13
5 2,02
6 1,94
7 1,90
8 1,86
9 1,83
10 1,81
11 1,80
12 1,78
13 1,77
14 1,76
15 1,75
16 1,75
17 1,74
18 1,73
19 1,73
20 1,73
21 1,72
22 1,72
23 1,71
24 1,71
25 1,71
26 1,71
27 1,70
28 1,70
29 1,70
30 1,70
40 1,68
¥ 1,65

 

Таблица 2. Значения критерия χ2
h 0,05  
1 3,84
2 5,99
3 7,81
4 9,49
5 11,1
6 12,6
7 14,1
8 15,5
9 16,9
10 18,3
 
Таблица 3. Достоверные значения Z
р Z
0,05 1,64
0,01 2,33

 

Таблица 4. Достоверные (критические) значения r
h=(N-2) р=0,05 (5%)
3 0,88
4 0,81
5 0,75
6 0,71
7 0,67
8 0,63
9 0,60
10 0,58
11 0.55
12 0,53
13 0,51
14 0,50
15 0,48
16 0,47
17 0,46
18 0,44
19 0,43
20 0,42

 

Таблица 5. Достоверные (критические) значения rs
h=(N-2) р = 0,05
2 1,000
3 0,900
4 0,829
5 0,714
6 0,643
7 0,600
8 0,564
10 0,506
12 0,456
14 0,425
16 0,399
18 0,377
20 0,359
22 0,343
24 0,329
26 0,317
28 0,306

Представленные результаты и исследования подтверждают, что применение искусственного интеллекта в области обработка данных в психологии имеет потенциал для революции в различных связанных с данной темой сферах. Надеюсь, что теперь ты понял что такое обработка данных в психологии и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Математические методы в психологии

Продолжение:


Часть 1 Статистика и обработка данных в психологии
Часть 2 Индуктивная статистика - Статистика и обработка данных в психологии
Часть 3 Корреляционный анализ - Статистика и обработка данных в психологии

создано: 2017-06-24
обновлено: 2024-11-14
144



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Математические методы в психологии

Термины: Математические методы в психологии