Лекция
Привет, Вы узнаете о том , что такое измерительные системы , Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое измерительные системы , настоятельно рекомендую прочитать все из категории МЕТРОЛОГИЯ И ЭЛЕКТРОРАДИОИЗМЕРЕНИЯ.
Назначение любой измерительной системы, ее необходимые функциональные возможности, технические параметры и характеристики в решающей степени определяются объектом исследования, для которого она создана. Из-за разнообразия структур современных ИС, динамичного развития и перечня решаемых задач, классификация их в настоящее время еще полностью не завершена.
История ИИС
Системы первого поколения (конец 50-х - 60-е годы) - это системы в основном централизованного циклического получения измерительной информации с элементами вычислительной техники на базе дискретной полупроводниковой техники. Этот этап принято называть периодом детерминизма, так как для анализа в ИИС использовался хорошо разработанный к тому времени аппарат аналитической математики.
ИИС второго поколения (70-е годы) используют адресный сбор информации и обработку информации с помощью встроенных ЭВМ. Элементную базу здесь представляют микроэлектронные схемы малой и средней степени интеграции. Этот период характеризуется решением целого ряда вопросов теории систем в рамках теории случайных процессов и математической статистики, поэтому его принято называть периодом стохас- тичности.
Третье поколение (начало 80-х годов) характеризуется широким введением в ИИС БИС, микропроцессоров и микропроцессорных блоков, микро-ЭВМ и промышленных функциональных блоков, совместимых между собой по информационным, метрологическим, энергетическим и конструктивным характеристикам, а также созданием распределенных ИИС. В этот период появились адаптивные ИИС.
Возникновение ИИС четвертого поколения (конец 80-х годов) - гибких перестраиваемых программируемых ИИС - обусловлено дальнейшим развитием системотехники и вычислительной техники - это гибкие перестраиваемые программируемые ИИС. В элементной базе резко возрастает доля интегральных схем большой и сверхбольшой степени интеграции.
Пятое поколение - это интеллектуальные и виртуальные измерительные информационные системы, построенные на базе персональных компьютеров и современного математического и программного обеспечения.
Классификация ИИС
В зависимости от выполняемых функций измерительные системы можно условно разделить на три основных вида:
- измерительные системы измерения и хранения информации (условно называемые измерительными системами прямого назначения);
- контрольно - измерительные (автоматического контроля);
- телеизмерительные системы.
К измерительным системам относят также системы распознавания образов и системы технической диагностики, которые в курсе, относящемся к радиоизмерениям, не изучаются.
По числу измерительных каналов измерительные системы подразделяются на одно-, двух-, трех- и многоканальные (многомерные). Для совместных и совокупных измерений часто используют многоканальные, аппроксимирующие системы.
Наиболее бурно в настоящее время разрабатываются и внедряются ИС прямого назначения, основной особенностью которых является возможность программным способом перестраивать их для измерений различных физических величин и менять режим измерений. Изменений в аппаратной части при этом не требуется.
Измерительные системы прямого назначения условно делят на:
- информационно-измерительные системы (часто их называют термином измерительные информационные системы; аббревиатура одинакова — ИИС);
- измерительно-вычислительные комплексы (ИВК);
- виртуальные информационно-измерительные приборы (устоявшееся у специалистов название — виртуальные приборы; или компьютерно-измерительные системы — КИС).
Информационно-измерительные системы
Самым широким классом измерительных систем прямого назначения являются ИИС. Назначение ИИС определяют как целенаправленное оптимальное ведение измерительного процесса и обеспечение смежных систем высшего уровня достоверной информацией. Основные функции ИИС,— получение измерительной информации от объекта исследования, ее обработка, передача, представление информации оператору или/и компьютеру, запоминание, отображение и формирование управляющих воздействий.
Информационно-измерительная система должна управлять измерительным процессом или экспериментом в соответствии с принятым критерием функционирования; выполнять возложенные на нее функции в соответствии с назначением и целью; обладать требуемыми показателями и характеристиками точности, помехоустойчивости, быстродействия, надежности, пропускной способности, адаптивности, сложности; отвечать экономическим требованиям, предъявляемым к способам и форме представления информации, размещения технических средств; быть приспособленной к функционированию с измерительными информационными системами смежных уровней иерархии и другими ИИС.
Основной функцией ИИС, как и любой другой технической системы является целенаправленное преобразование входной информации в выходную. Это преобразование выполняется либо автоматически с помощью аппаратуры технического обеспечения, либо совместно — оперативным персоналом и аппаратурой технического обеспечения в сложных ИИС, ИВК и виртуальных приборах.
Применение современных средств цифровой схемотехники коренным образом изменило принципы построения ИИС. Об этом говорит сайт https://intellect.icu . Кроме того, методы обоснованного распределения и направления информационных потоков дают возможность уменьшить их избыточность. Это позволяет ставить задачу о возможно максимальном переносе обработки измерительной информации к месту ее формирования, т. е. перейти к конвейерной обработке измерительной информации в распределенной ИИС. В целом такая система состоит из следующих основных частей: системы первичных преобразователей (датчиков), устройств сбора и первичной обработки информации, средств вторичной обработки информации, устройств управления и контроля, устройств связи с другими системами объекта, накопителей информации.
Пример Мобильный информационно-измерительный комплекс ИВК М2 «Поток»
ИЗМЕРИТЕЛЬНЫЕ
УПРАВЛЯЮЩИЕ
По организации алгоритма функционирования различают следующие виды ИИС:
- заранее заданным алгоритмом работы, правила функционирования которых не меняются, поэтому их можно использовать только для исследования объектов, работающих в постоянном режиме;
- программируемые, в которых изменяют алгоритм работы по программе, составляемой в соответствии с условиями функционирования объекта исследования;
- адаптивные, алгоритм работы которых, а часто и структура изменяются, приспосабливаясь к изменениям измеряемых величин и условной работы объекта;
- интеллектуальные, обладающие способностью к перенастройке в соответствии с изменяющимися условиями функционирования и иные выполнять все функции измерения и контроля в реальном и масштабе времени.
Математическое, программное и информационное обеспечение входит в состав лишь ИИС с вычислительными комплексами.
Математическое обеспечение — аналитические (математические) модели объекта исследования (измерения) и вычислительные алгоритмы.
В математическую модель объекта измерения входит описание взаимодействия между переменными входа и выхода для установившегося и переходного состояний, т.е. модель статики и динамики, а также граничные условия и допустимые изменения переменных процесса. Форма записи математической модели может быть различна: алгебраические и трансцендентные уравнения, дифференциальные уравнения и уравнения в частных производных. Могут использоваться переходные и передаточные функции, частотные и спектральные характеристики и пр. различают 3 основных метода получения математических моделей исследования ИИС: аналитические, экспериментальные и экспериментально-аналитические.
В последние годы при создании большинства ИС наиболее часто используют математическое моделирование, реализующее цепочку: объект – модель – вычислительный алгоритм – программа для компьютера – расчет на компьютере – анализ расчетов – управление исследованием.
Алгоритм измерения может быть представлен программно, словесно, аналитически, графически или сочетанием этих методов. Последовательность действий при этом непроизвольна, а реализует тот или иной метод решения задачи. Во всех случаях поставленная задача должна быть на столько точно сформулирована, чтобы не осталось места различным двусмысленностям.
Программное обеспечение ИИС включает в себя системное и общее прикладное программное обеспечение, в совокупности образующее математическое обеспечение, которое реализуется программной подсистемой. Системное программное обеспечение – совокупность программного обеспечения компьютера, используемого в ИИС, и дополнительных программных средств, позволяющих работать в диалоговом режиме, управлять измерительными комплексами; обмениваться информацией внутри подсистем комплекса; автоматически проводить диагностику технического состояния.
По существу, программное обеспечение ИИС представляет собой взаимодополняющую, взаимодействующую совокупность подпрограмм, реализующих:
- типовые алгоритмы эффективного представления и обработка измерительной информации, планирование эксперимента и других измерительных процедур;
- архивирование данных измерений;
- метрологические функции комплекса (аттестацию, поверку, экспериментальное определение нормируемых метрологических характеристик и т. п.).
Информационное обеспечение определяет способы и конкретные нормы информационного отображения состояния объекта исследования в виде документов, диаграмм, графиков, сигналов для их предоставления обслуживающему персоналу и компьютеру для дальнейшего использования в управлении.
Всю измерительную систему в целом охватывает метрологическое обеспечение (рис. 1).
Рисунок 1
В структуру технической подсистемы ИИС входят:
• блок первичных измерительных преобразователей;
• средства вычислений электрических величин (измерительные компоненты);
• совокупность цифровых устройств и компьютерной техники(вычислительных компонентов);
• меры текущего времени и интервалов времени;
• блок вторичных измерительных преобразователей;
• устройства ввода-вывода аналоговых и цифровых сигналов с нормированными метрологическими характеристиками;
• совокупность элементов сравнения, мер и элементов описания;
• блок преобразователей сигнала, цифровых табло, дисплеев, элементов памяти и пр.;
• различные накопители информации.
Кроме указанных элементов в подсистемы ИИС может входить ряд устройств согласования со штатными системами исследуемого объекта, телеметрией и пр.м
Централизированная ИИС
Децентрализированная ИИС
Условные обозначения ИИС
Важное значение для эксплуатации ИИС имеет эргономическое, эффективное и наглядное построение форм дисплея и управляющих элементов, называемых интерфейсом пользователя, обеспечивающих взаимодействие оператора с персональным (или специализированным) компьютером. В общем же случае интерфейсом называют устройство сопряжения персонального компьютера со средствами измерений или любыми другими внешними техническими системами (иногда в это понятие включают и программное обеспечение измерительной системы). Эффективность работы рассматриваемого интерфейса заключается в быстром, насколько это возможно, развитии у пользователя простой концептуальной модели взаимодействия с ИИС. Другими важными характеристиками интерфейса пользователя являются его наглядность, дизайн и конкретность, что обеспечивают с помощью последовательно раскрываемых окон, раскрывающихся вложенных меню и командных строк с указанием функциональных «горячих» клавиш.
Измерительно-вычислительные комплексы
Одной из разновидностей ИИС являются измерительно-вычислительные комплексы. Основными признаками принадлежности измерительной системы к ИВК служат наличие компьютера, нормированных метрологических характеристик, программного управления средствами измерений, блочно-модульной структуры построения, состоящей из технической (аппаратной) и программной (алгоритмической) подсистем.
По назначению ИВК делятся на типовые, проблемные и специализированные.
Типовые ИВК предназначены для решения широкого круга типовых задач автоматизации измерений, испытаний или исследований независимо от области применения.
Проблемные ИВК разрабатывают для решения специфичной задачи в конкретной области автоматизации измерений.
Специализированные ИВК используют для решения уникальных задач автоматизации измерений, для которых разработка типовых и специализированных комплексов экономически нецелесообразна.
Измерительно-вычислительные комплексы предназначены для следующих задач:
• осуществления прямых, косвенных, совместных или совокупных методов измерений физических величин;
• представления оператору результатов измерений в нужном виде и управления процессом измерений и воздействия на объект измерений.
Чтобы реализовать эти функции, ИВК должен:
• эффективно воспринимать, преобразовывать и обрабатывать электрические сигналы от первичных измерительных преобразователей, а также управлять средствами измерений и другими техническими устройствами, входящими в его состав;
• вырабатывать нормированные электрические сигналы, являющиеся входными для средств воздействия на объект, оценивать метрологические характеристики и представлять результаты измерений в установленной форме.
Рис. Структурная схема измерительно-вычислительного комплекса
Примеры
Измерительно-вычислительный комплекс (ИВК) «Гидроразрыв» предназначен для определения компонент абсолютных напряжений при детальном изучении состояния массива вблизи подземных сооружений, а также для контроля напряженного состояния горных пород в глубоких скважинах. Область наиболее эффективного применения комплекса — слаботрещиноватые скальные породы, малопроницаемые пласты, соли.
В состав ИВК «Гидроразрыв» входят: двухпакерный зонд, устройство преобразования и передачи данных, датчик давления, портативный компьютер, ручной насос, адаптер, манометр, краны одноходовой и многоходовой, напорные трубопроводы.
Устройство преобразования и передачи данных разработано на основе современных унифицированных электронных модулей (ADVANTEC). Прикладное программное обеспечение на основе пакета графического программирования «LabView» позволяет визуализировать процесс изменения давления в межпакерном пространстве в ходе эксперимента, проводить анализ результатов непосредственно после окончания измерений в подземных условиях, что обеспечивает оперативное принятие решений о результативности экспериментов.
диаметр испытываемых скважин, мм | 59; 76 |
глубина зондирования, м | до 50 |
давление в гидросистеме, МПа | до 70 |
рабочая жидкость | масло «индустриальное-20», вода с присадками |
датчик давления | МИДА-ПИ-51П |
разрешающая способность системы регистрации давления, МПа | 0,2 |
Информация, изложенная в данной статье про измерительные системы , подчеркивают роль современных технологий в обеспечении масштабируемости и доступности. Надеюсь, что теперь ты понял что такое измерительные системы и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории МЕТРОЛОГИЯ И ЭЛЕКТРОРАДИОИЗМЕРЕНИЯ
Комментарии
Оставить комментарий
МЕТРОЛОГИЯ И ЭЛЕКТРОРАДИОИЗМЕРЕНИЯ
Термины: МЕТРОЛОГИЯ И ЭЛЕКТРОРАДИОИЗМЕРЕНИЯ