Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

- 2.2. Составные части объектного подхода

Лекция



Это окончание невероятной информации про .

...

возможность не входила в стандарт до недавнего времени, хотя на практике, конечно, можно ввести в базовый класс операцию, возвращающую код класса (строку или значение перечислимого типа). Однако для этого надо иметь очень серьезные причины, поскольку проверка типа в ходе выполнения ослабляет инкапсуляцию. Как будет показано в следующем разделе, необходимость проверки типа можно смягчить, используя полиморфные операции.

В языках с сильной типизацией гарантируется, что все выражения будут согласованы по типу. Что это значит, лучше пояснить на примере. Следующие присваивания допустимы:

s1 = s2;
s1 = w;

Первое присваивание допустимо, поскольку переменные имеют один и тот же класс, а второе - поскольку присваивание идет снизу вверх по типам. Однако во втором случае происходит потеря информации (известная в C++ как "проблема срезки"), так как класс переменной w, WaterTank, семантически богаче, чем класс переменной s1, то есть StorageTank.

Следующие присваивания неправильны:

w = s1; // Неправильно
w = n; // Неправильно

В первом случае неправильность в том, что присваивание идет сверху вниз по иерархии, а во втором классы даже не находятся в состоянии подчиненности.

Иногда необходимо преобразовать типы. Например, посмотрите на следующую функцию:

void checkLevel(const StorageTank& s);

Мы можем привести значение вышестоящего класса к подклассу в том и только в том случае, если фактическим параметром при вызове оказался объект класса WaterTank. Или вот еще случай:

if (((WaterTank&)s).currentTemperature() < 32.0) ...

Это выражение согласовано по типам, но не безопасно. Если при выполнении программы вдруг окажется, что переменная s обозначала объект класса NutrientTank, приведение типа даст непредсказуемый результат во время исполнения. Вообще говоря, преобразований типа надо избегать, поскольку они часто представляют собой нарушение принятой системы абстракций.

Теслер отметил следующие важные преимущества строго типизированных языков:

  • "Отсутствие контроля типов может приводить к загадочным сбоям в программах во время их выполнения.
  • В большинстве систем процесс редактирование-компиляция-отладка утомителен, и раннее обнаружение ошибок просто незаменимо.
  • Объявление типов улучшает документирование программ.
  • Многие компиляторы генерируют более эффективный объектный код, если им явно известны типы" [72].

Языки, в которых типизация отсутствует, обладают большей гибкостью, но даже в таких языках, по мнению Борнинга и Ингалса: "Программисты обычно знают, какие объекты ожидаются в качестве аргументов и какие будут возвращаться" [73]. На практике, особенно при программировании "в большом", надежность языков со строгой типизацией с лихвой компенсирует некоторую потерю в гибкости по сравнению с нетипизированными языками.

Примеры типизации: статическое и динамическое связывание. Сильная и статическая типизация - разные вещи. Строгая типизация следит за соответствием типов, а статическая типизация (иначе называемая статическим или ранним связыванием) определяет время, когда имена связываются с типами. Статическая связь означает, что типы всех переменных и выражений известны во время компиляции; динамическое связывание (называемое также поздним связыванием) означает, что типы неизвестны до момента выполнения программы. Концепции типизации и связывания являются независимыми, поэтому в языке программирования может быть: типизация - сильная, связывание - статическое (Ada), типизация - сильная, связывание - динамическое (C++, Object Pascal), или и типов нет, и связывание динамическое (Smalltalk). Язык CLOS занимает промежуточное положение между C++ и Smalltalk: определения типов, сделанные программистом, могут быть либо приняты во внимание, либо не приняты.

Прокомментируем это понятие снова примером на C++. Вот "свободная", то есть не входящая в определение какого-либо класса, функция [Свободная функция - функция, не входящая ни в какой класс. В чисто объектно-ориентированных языках, типа Smalltalk, свободных процедур не бывает, каждая операция связана с каким-нибудь классом]:

void balanceLevels(StorageTank& s1, StorageTank& s2);

Вызов этой функции с экземплярами класса StorageTank или любых его подклассов в качестве параметров будет согласован по типам, поскольку тип каждого фактического параметра происходит в иерархии наследования от базового класса StorageTank.

При реализации этой функции мы можем иметь что-нибудь вроде:

if (s1.level()> s2.level()) s2.fill();

В чем особенность семантики при использовании селектора level? Он определен только в классе StorageTank, поэтому, независимо от классов объектов, обозначаемых переменными в момент выполнения, будет использована одна и та же унаследованная ими функция. Вызов этой функции статически связан при компиляции - мы точно знаем, какая операция будет запущена.

Иное дело fill. Этот селектор определен в StorageTank и переопределен в WaterTank, поэтому его придется связывать динамически. Если при выполнении переменная s2 будет класса WaterTank, то функция будет взята из этого класса, а если - NutrientTank, то из StorageTank. В C++ есть специальный синтаксис для явного указания источника; в нашем примере вызов fill будет разрешен, соответственно, как WaterTank::fill или StorageTank::fill [Так синтаксис C++ определяет явную квалификацию имени].

Это особенность называется полиморфизмом: одно и то же имя может означать объекты разных типов, но, имея общего предка, все они имеют и общее подмножество операций, которые можно над ними выполнять [74]. Противоположность полиморфизму называется мономорфизмом; он характерен для языков с сильной типизацией и статическим связыванием (Ada).

Полиморфизм возникает там, где взаимодействуют наследование и динамическое связывание. Это одно из самых привлекательных свойств объектно-ориентированных языков (после поддержки абстракции), отличающее их от традиционных языков с абстрактными типами данных. И, как мы увидим в следующих главах, полиморфизм играет очень важную роль в объектно-ориентированном проектировании.

Параллелизм

Что такое параллелизм? Есть задачи, в которых автоматические системы должны обрабатывать много событий одновременно. В других случаях потребность в вычислительной мощности превышает ресурсы одного процессора. В каждой из таких ситуаций естественно использовать несколько компьютеров для решения задачи или задействовать многозадачность на многопроцессорном компьютере. Процесс (поток управления) - это фундаментальная единица действия в системе. Каждая программа имеет по крайней мере один поток управления, параллельная система имеет много таких потоков: век одних недолог, а другие живут в течении всего сеанса работы системы. Реальная параллельность достигается только на многопроцессорных системах, а системы с одним процессором имитируют параллельность за счет алгоритмов разделения времени.

Кроме этого "аппаратного" различия, мы будем различать "тяжелую" и "легкую" параллельность по потребности в ресурсах. "Тяжелые" процессы управляются операционной системой независимо от других, и под них выделяется отдельное защищенное адресное пространство. "Легкие" сосуществуют в одном адресном пространстве. "Тяжелые" процессы общаются друг с другом через операционную систему, что обычно медленно и накладно. Связь "легких" процессов осуществляется гораздо проще, часто они используют одни и те же данные.

Многие современные операционные системы предусматривают прямую поддержку параллелизма, и это обстоятельство очень благоприятно сказывается на возможности обеспечения параллелизма в объектно-ориентированных системах. Например, системы UNIX предусматривают системный вызов fork, который порождает новый процесс. Системы Windows NT и OS/2 - многопоточные; кроме того они обеспечивают программные интерфейсы для создания процессов и манипулирования с ними.

Лим и Джонсон отмечают, что "возможности проектирования параллельности в объектно-ориентированных языках не сильно отличаются от любых других, - на нижних уровнях абстракции параллелизм и OOP развиваются совершенно независимо. С OOP или без, все традиционные проблемы параллельного программирования сохраняются" [75]. Действительно, создавать большие программы и так непросто, а если они еще и параллельные, то надо думать о возможном простое одного из потоков, неполучении данных, взаимной блокировке и т.д.

К счастью, как отмечают те же авторы далее: "на верхних уровнях OOP упрощает параллельное программирование для рядовых разработчиков, пряча его в повторно-используемые абстракции" [76]. Блэк и др. сделали следующий вывод: "объектная модель хороша для распределенных систем, поскольку она неявно разбивает программу на (1) распределенные единицы и (2) сообщающиеся субъекты" [77].

В то время, как объектно-ориентированное программирование основано на абстракции, инкапсуляции и наследовании, параллелизм главное внимание уделяет абстрагированию и синхронизации процессов [78]. Объект есть понятие, на котором эти две точки зрения сходятся: каждый объект (полученный из абстракции реального мира) может представлять собой отдельный поток управления (абстракцию процесса). Такой объект называется активным. Для систем, построенных на основе OOD, мир может быть представлен, как совокупность взаимодействующих объектов, часть из которых является активной и выступает в роли независимых вычислительных центров. На этой основе дадим следующее определение параллелизма:

2.2. Составные части объектного подхода

Параллелизм позволяет различным объектам действовать одновременно.

Параллелизм - это свойство, отличающее активные объекты от пассивных.

Примеры параллелизма. Ранее мы обзавелись классом ActiveTemperatureSensor, поведение которого предписывает ему периодически измерять температуру и обращаться к известной ему функции вызова, когда температура отклоняется на некоторую величину от установленного значения. Как он будет это делать, мы в тот момент не объяснили. При всех секретах реализации понятно, что это - активный объект и, следовательно, без параллелизма тут не обойтись. В объектно-ориентированном проектировании есть три подхода к параллелизму.

Во-первых, параллелизм - это внутреннее свойство некоторых языков программирования. Так, для языка Ada механизм параллельных процессов реализуется как задача. В Smalltalk есть класс process, которому наследуют все активные объекты. Есть много других языков со встроенными механизмами для параллельного выполнения и синхронизации процессов - Actors, Orient 84/K, ABCL/1, которые предусматривают сходные механизмы параллелизма и синхронизации. Во всех этих языках можно создавать активные объекты, код которых постоянно выполняется параллельно с другими активными объектами.

Во-вторых, можно использовать библиотеку классов, реализующих какую-нибудь разновидность "легкого" параллелизма. Например, библиотека AT&T для C++ содержит классы Shed, Timer, Task и т.д. Ее реализация, естественно, зависит от платформы, хотя интерфейс достаточно хорошо переносим. При этом подходе механизмы параллельного выполнения не встраиваются в язык (и, значит, не влияют на системы без параллельности), но в то же время практически воспринимаются как встроенные.

Наконец, в-третьих, можно создать иллюзию многозадачности с помощью прерываний. Для этого надо кое-что знать об аппаратуре. Например, в нашей реализации класса ActiveTemperatureSensor мы могли бы иметь аппаратный таймер, периодически прерывающий приложение, после чего все датчики измеряли бы температуру и обращались бы, если нужно, к своим функциям вызова.

Как только в систему введен параллелизм, сразу возникает вопрос о том, как синхронизировать отношения активных объектов друг с другом, а также с остальными объектами, действующими последовательно. Например, если два объекта посылают сообщения третьему, должен быть какой-то механизм, гарантирующий, что объект, на который направлено действие, не разрушится при одновременной попытке двух активных объектов изменить его состояние. В этом вопросе соединяются абстракция, инкапсуляция и параллелизм. В параллельных системах недостаточно определить поведение объекта, надо еще принять меры, гарантирующие, что он не будет растерзан на части несколькими независимыми процессами.

Сохраняемость

Любой программный объект существует в памяти и живет во времени. Аткинсон и др. предположили, что есть непрерывное множество продолжительности существования объектов: существуют объекты, которые присутствуют лишь во время вычисления выражения, но есть и такие, как базы данных, которые существуют независимо от программы. Этот спектр сохраняемости объектов охватывает:

  • "Промежуточные результаты вычисления выражений.
  • Локальные переменные в вызове процедур.
  • Собственные переменные (как в ALGOL-60), глобальные переменные и динамически создаваемые данные.
  • Данные, сохраняющиеся между сеансами выполнения программы.
  • Данные, сохраняемые при переходе на новую версию программы.
  • Данные, которые вообще переживают программу" [79].

Традиционно, первыми тремя уровнями занимаются языки программирования, а последними - базы данных. Этот конфликт культур приводит к неожиданным решениям: программисты разрабатывают специальные схемы для сохранения объектов в период между запусками программы, а конструкторы баз данных переиначивают свою технологию под короткоживущие объекты [80].

Унификация принципов параллелизма для объектов позволила создать параллельные языки программирования. Аналогичным образом, введение сохраняемости, как нормальной составной части объектного подхода приводит нас к объектно-ориентированным базам данных (OODB, object-oriented databases). На практике подобные базы данных строятся на основе проверенных временем моделей - последовательных, индексированных, иерархических, сетевых или реляционных, но программист может ввести абстракцию объектно-ориентированного интерфейса, через который запросы к базе данных и другие операции выполняются в терминах объектов, время жизни которых превосходит время жизни отдельной программы. Как мы увидим в главе 10, эта унификация значительно упрощает разработку отдельных видов приложений, позволяя, в частности, применить единый подход к разным сегментам программы, одни из которых связаны с базами данных, а другие не имеют такой связи.

Языки программирования, как правило, не поддерживают понятия сохраняемости; примечательным исключением является Smalltalk, в котором есть протоколы для сохранения объектов на диске и загрузки с диска. Однако, записывать объекты в неструктурированные файлы - это все-таки наивный подход, пригодный только для небольших систем. Как правило, сохраняемость достигается применением (немногочисленных) коммерческих OODB [81]. Другой вариант - создать объектно-ориентированную оболочку для реляционных СУБД; это лучше, в частности, для тех, кто уже вложил средства в реляционную систему. Мы рассмотрим такую ситуацию в главе 10.

Сохраняемость - это не только проблема сохранения данных. В OODB имеет смысл сохранять и классы, так, чтобы программы могли правильно интерпретировать данные. Это создает большие трудности по мере увеличения объема данных, особенно, если класс объекта вдруг потребовалось изменить.

До сих пор мы говорили о сохранении объектов во времени. В большинстве систем объектам при их создании отводится место в памяти, которое не изменяется и в котором объект находится всю свою жизнь. Однако для распределенных систем желательно обеспечивать возможность перенесения объектов в пространстве, так, чтобы их можно было переносить с машины на машину и даже при необходимости изменять форму представления объекта в памяти. Этими вопросами мы займемся в главе 12.

В заключение определим сохраняемость следующим образом:

Сохраняемость - способность объекта существовать во времени, переживая породивший его процесс, и (или) в пространстве, перемещаясь из своего первоначального адресного пространства.

Исследование, описанное в статье про 2.2. Составные части объектного подхода, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое 2.2. Составные части объектного подхода и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Объектно-ориентированный анализ и проектирование

Продолжение:


Часть 1 2.2. Составные части объектного подхода
Часть 2 - 2.2. Составные части объектного подхода
Часть 3 - 2.2. Составные части объектного подхода

создано: 2020-12-19
обновлено: 2021-03-13
132265



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей



Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Объектно-ориентированный анализ и проектирование

Термины: Объектно-ориентированный анализ и проектирование