Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

История и поколения компьютеров ЭВМ

Лекция



Привет, Вы узнаете о том , что такое поколения комьютеров, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое поколения комьютеров, поколения эвм , настоятельно рекомендую прочитать все из категории История компьютерной техники и IT технологий.

Аннотация: В лекции рассмотрена история развития ЭВМ, представлены поколения эвм , параметры ЭВМ разных поколений, стоимостные оценки ЭВМ. Представлены 3 этапа информационных технологий, а также основные принципы работы ЭВМ.

Идея использования программного управления для построения устройства, автоматически выполняющего арифметические вычисления, была впервые высказана английским математиком Ч.Бэббиджем еще в 1833г. Однако его попытки построить механическое вычислительное устройство с программным управлением не увенчались успехом.

Первой работающей универсальной автоматически управляемой ВМ считается расчетно-механическая машина "Марк - 1" ( США, 1944г. ). Простои машины составляли большую часть времени. Столь же низкая производительность оказалась и у машины "Марк - 2", построенной на реле улучшенной конструкции.

Проект первой ЭВМ ЭНИАК был разработан Дж.Моучли (США, 1942 г.); в 1946 г. машина вступила в строй. В этой машине 18.000 электрических ламп, 1500 электромеханических реле. Применение ламп повысило скорость выполнения операций в 1000 раз по сравнению с устройством "Марк - 1".

За точку отсчета эры ЭВМ принимают сеансы опытной эксплуатации машины ЭНИАК, которые начались в Пенсильванском университете в 1946г.

Приведем еще некоторые технические характеристики этой ЭВМ : общий вес – 30т, производительность - 5000 операций в секунду. Спустя 40 лет после пуска первой ЭВМ ежегодное производство компонентов ВТ оценивалось к 1985г. в 1014 активных логических элементов (active elements groups ), что эквивалентно 1 ЭНИАК на каждого жителя земли. Для сравнения: за 500 лет развития книгопечатания к 1962г. общий тираж всех изданий достиг уровня 2 книги на каждого жителя Земли.

Электронные лампы стали элементной базой ВМ первого поколения. Основная схема – симметричный триггер был создан в 1918г. советским ученым Бонч-Бруевичем М.А. В 1919г. аналогичная схема была разработана также американскими учеными Икклзом и Джорданом.

Первые проекты отечественных ЭВМ были предложены С.А. Лебедевым, Б.И. Рамеевым в 1948г. В 1949-51гг. по проекту С.А. Лебедева была построена МЭСМ ( малая электронно-счетная машина ). К ЭВМ 1-го поколения относится и БЭСМ-1 (большая электронно-счетная машина ), разработка которой под руководством С.А. Лебедева была закончена в 1952г., она содержала 5 тыс. ламп, работала без сбоев в течение 10 часов. Быстродействие достигало 10 тыс. операций в секунду. Почти одновременно проектировалась ЭВМ "Стрела" под руководством Ю.Я. Базилевского, в 1953г. она была запущена в производство. Позже появилась ЭВМ "Урал - 1", положившая начало большой серии машин "Урал", разработанных и внедренных в производство под руководством Б.И. Рамеева. В 1958г. запущена в серийное производство ЭВМ первого поколения М – 20 ( быстродействие до 20 тыс. операций/с ).

С появлением транзисторов в середине 50-х годов на смену первого поколения ЭВМ пришли ЭВМ 2-го поколения, построенные на полупроводниковых приборах.

В нашей стране были созданы полупроводниковые ЭВМ разных назначений: малые ЭВМ серий "Наири" и "Мир", средние ЭВМ со скоростью работы 5-30 тыс. операций/с – "Минск - 22" и "Минск – 32, "Раздан – 2", "Раздан – 3", БЭСМ – 4, М – 220 и лучшая из машин второго поколения – БЭСМ – 6 со скоростью работы до 1 млн. опер/с.

В начале 60-х годов возникло новое направление в электронике – интегральная электроника. Использование интегральных схем для построения ЭВМ стало революцией в ВТ и способствовало появлению машин 3-го поколения.

С 1972г. начался выпуск моделей первой очереди ЕС ЭВМ (совместно с социалистическими странами ). Ряд – 1 : ЕС – 1010, 1020, 1022, 1030, 1033, 1040, 1050, 1052. Вторая очередь ( Ряд - 2 ) : ЕС – 1015, 1025, 1035, 1045, 1055, 1060, 1065 имела более современную схемотехническую, конструкторско-технологическую базу, за счет чего у них увеличилась производительность, и расширились функциональные возможности.

Одна из характерных особенностей ЭВМ 4-го поколения - переход от интегральных функциональных схем к интегральным подсистемам ЭВМ. Подсчитано, что внедрение БИС увеличивает надежность не менее чем в 10 раз. Из отечественных ЭВМ к машинам 4-го поколения, прежде всего, относятся машины семейства "Эльбрус".

Таблица 1.1 показывает связь между основными параметрами схемотехники и поколениями ЭВМ. Об этом говорит сайт https://intellect.icu . Быстродействие характеризуетсязадержкой распространения сигнала, вносимой одним элементарным элементом (конъюнктором, дизъюнктором и т. д.). Важный показатель – плотность упаковки, количество единиц элементов, приходящихся на 1см3.

Поколения
Признак, параметр ЭВМ 1-ое 1946-1955 2-ое 1955-1965 3-е 4-ое после 80г.
1965-1970 после 70г.
Основные элементы Реле, электронные лампы Полупроводниковые приборы ИС БИС СБИС
Быстродействие (задержка/ элемент или схема) 1мс 1мкс 10нс 1нс < 1нс
Плотность упаковки, эл-тов/см3 0,1 2-3 10-20 1000 > 10000

Спустя 30 лет индустрия ЭВМ проходит, как видно из рис. 1.1 стомиллиардный по общему финансовому весу, рубеж и все еще сохраняет наиболее высокие темпы роста объема продаж среди всех отраслей обрабатывающей промышленности США.

История и поколения компьютеров ЭВМ


Рис. 1.1. Динамика суммарного объема продаж моделей ВТ в США (заштрихованная область – периферийное оборудование)

Рост мирового парка ЭВМ и динамика его структуры показаны на рисунках. Каждый новый класс ЭВМ сначала проходит этап экспоненциального роста, после чего общая численность парка ЭВМ данного типа стабилизируется в границах, которые определяются типовой областью его приложений. Для больших ЭВМ эти границы очерчивались общим числом существующих достаточно крупных организаций, способных их приобретать. Круг применений мини-ЭВМ уже включал средние, а также некоторые мелкие предприятия, отдельные подразделения и т. д. Для персональных ЭВМ эти границы определяются лишь общей численностью занятых в народном хозяйстве промышленно развитых стран. Наложение во времени процессов бурного роста и последующей стабилизации парка ЭВМ различных типов приводит к наблюдаемому уже более 30 лет экспоненциальному росту мирового парка ЭВМ.

История и поколения компьютеров ЭВМ


Рис. 1.2. Структурные сдвиги в американской индустрии ЭВМ: относительное распределение годового объема продаж больших, малых и персональных ЭВМ (оценка Громова Г.Р.)

1 – Большие ЭВМ

2 – Мини-ЭВМ

3 – Персональные ЭВМ

4 – Суммарный парк универсальных ЭВМ

5 – Новый тип ЭВМ

Исключением остается относительно небольшой (по числу устанавливаемых машин) класс супер-ЭВМ ("Крэй – 1", "Стар – 100", "Кибер – 205" и др.). Попадание в этот класс определяется именно заметным отрывом от ЭВМ других типов по производительности.

Три этапа информационной технологии: эволюция критериев.

В 1953г. создатель теории информации американский математик Клод Шеннон писал: "Наши ВМ выглядят как ученые-схоласты. При вычислении длинной цепи арифметических операций ЦВМ значительно обгоняют человека. Когда же пытаются приспособить ЦВМ для выполнения неарифметических операций, они оказываются неуклюжими и неприспособленными для такой работы."

1 Этап: машинные ресурсы. Отмеченные Шенноном функциональные ограничения, а также устрашающая стоимость первых ЭВМ полностью определяли основную задачу информационной технологии 50-х – начала 60-х гг. - повышение эффективности обработки данных по уже формализованным или легко формализуемым алгоритмам.

Основной целью тогда было – уменьшить общее число машинных тактов, которых требовала для своего решения та или иная программа, а также объем занимаемой ею ОЗУ. Основные затраты на обработку данных находились тогда почти в прямой зависимости от затраченного на них машинного времени.

2 Этап: программирование. В середине 60-х годов начался 2-й этап развития информационной технологии, который продолжался до начала 80-х годов. От технологии эффективного исполнения программ к технологии эффективного программирования – так можно было определить общее направление смены критериев эффективности в течение этого этапа. Наиболее известным результатом этого первого радикального пересмотра критериев технологии программирования стала созданная в начале 70-х годов ОС UNIX. Операционную системуUNIX, нацеленную, прежде всего, на повышение эффективности труда программистов, разработали сотрудники "Белл Лэбс" К. Томпсон и Д. Ритчи, которых совершенно не удовлетворяли имеющиеся примитивные средства проектирования программ, ориентированные на пакетный режим. На рубеже 80-х годов UNIX рассматривалась как классический образец ОС – она начала триумфальное шествие на мини-ЭВМ серииPDP – 11 в середине 70-х годов.

3 Этап: формализация знаний. Персональный компьютер, как правило, имеет развитые средства самообучения пользователя-новичка работе за пультом, гибкие средства защиты от его ошибок и, самое главное, все аппаратно-программные средства такой ЭВМ подчинены одной "сверхзадаче" - обеспечить "дружественную реакцию" машины на любые, в том числе неадекватные, действия пользователя. Основная задача персональных вычислений - формализация профессиональных знаний – выполняемая, как правило, самостоятельно непрограммирующим пользователем или при минимальной технической поддержке программиста.

Принципы работы ЭВМ

Любая форма человеческой деятельности, любой процесс функционирования технического объекта связаны с передачей и преобразованием информации. Информацией называются сведения о тех или иных явлениях природы, событиях в общественной жизни и процессах в технических устройствах. Информация, воплощенная и зафиксированная в материальной форме, называется сообщением. Сообщения могут быть непрерывными и дискретными (цифровыми). Непрерывное (аналоговое) сообщение представляется физической величиной (электрическим напряжением, током и т. д.), изменения которой во времени отображают протекание рассматриваемого процесса.

Для дискретного сообщения характерно наличие фиксированного набора элементов, из которых в определенные моменты времени формируются различные последовательности. ЭВМ или компьютеры являются преобразователями информации. В них исходные данные задачи преобразуются в результат ее решения. В соответствии с используемой формой представления информации машины делятся на 2 класса: непрерывного действия – аналоговые и дискретного действия – цифровые. Мы изучаем ЭВМ (цифровые).

История и поколения компьютеров ЭВМ


Рис. 1.3. Классическая структурная схема ЭВМ

Арифметико-логическое устройство (АЛУ) – преобразует машинные слова

Память – основная или оперативная (внутренняя) память (ОП); внешняя память (ВП)

Ячейки памяти нумеруются, номер ячейки называется адресом.

В запоминающих устройствах (ЗУ), реализующих в ЭВМ функцию памяти, выполняются операции считывания хранимой информации для передачи в другие устройства и записи информации, поступающей из других устройств.

Алгоритмом решения задачи численным методом называют последовательность арифметических и логических операций, которые надо произвести над исходными данными и промежуточными результатами для получения решения задачи. Алгоритм можно задать указанием, какие следует произвести операции, в каком порядке и над какими словами. Описание алгоритма в форме, воспринимаемой ЭВМ, называется программой.

Программа состоит из отдельных команд. Каждая команда предписывает определенное действие и указывает, над какими словами (операндами) это действие производится. Программа представляет собой совокупность команд, записанных в определенной последовательности, обеспечивающей решение задачи на ЭВМ.

Пусть, например, нужно вычислить

F = (a – x)/(ax + c),

при заданных численных значениях а, с, х. Программу вычисления F можно представить следующей последовательностью команд:

  1. а – х ;
  2. а*х ;
  3. ах + с ;
  4. (а – х)/(ax + c).

Для того чтобы устройство управления могло воспринимать команды, они должны быть закодированы в цифровой форме.

Автоматическое управление процессом решения задачи достигается на основе принципа программного управления, который составляет главную особенность ЭВМ.

Другим важнейшим принципом является принцип хранимой в памяти программы, согласно которому программа, закодированная в цифровом виде, хранится в памяти наравне с числами. В команде указываются не сами участвующие в операциях числа, а адреса ячеек ОП, в которых они находятся и адрес ячейки, куда помещается результат операции.

Использование двоичных схем, принципов программного управления и хранимой в памяти программы позволило достигнуть высокогобыстродействия и сократить во много раз число команд в программах решения задач, содержащих вычисляемые циклы, по сравнению с числом операций, которые производит машина при выполнении этих программ.

Команды выполняются в порядке, соответствующем их расположению в последовательных ячейках памяти, кроме команд безусловного и условного перехода, изменяющих этот порядок соответственно безусловно или только при выполнении некоторого условия, обычно задаваемого в виде равенства нулю, положительного или отрицательного результата предыдущей команды или отношения типа <, =, >для указываемых командой чисел. Благодаря наличию команд условного перехода ЭВМ может автоматически изменять ход выполняемого процесса, решать сложные логические задачи.

При помощи устройства ввода программа и исходные данные считываются и переносятся в ОП.

Вау!! 😲 Ты еще не читал? Это зря!

Выводы из данной статьи про поколения комьютеров указывают на необходимость использования современных методов для оптимизации любых систем. Надеюсь, что теперь ты понял что такое поколения комьютеров, поколения эвм и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории История компьютерной техники и IT технологий

создано: 2016-04-15
обновлено: 2024-11-11
151



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

История компьютерной техники и IT технологий

Термины: История компьютерной техники и IT технологий