Hi there! Our project relies on ads or donation to keep the site free to use. Please sending a donation . Thanks!
Подождите, пожалуйста, выполняется поиск в заданном разделе

Биокомпьютеры основы работы, история

В настоящее время, когда каждый новый шаг в совершенствовании полупроводниковых технологий дается со все большим трудом, ученые ищут альтернативные возможности развития вычислительных систем. Естественный интерес ряда исследовательских групп (среди них Оксфордский и Техасский университеты, Массачусетский технологический институт, лаборатории Беркли, Сандия и Рокфеллера) вызвали природные способы хранения и обработки информации в биологических системах. Итогом их изысканий явился (или, точнее, еще только должен явиться) гибрид информационных и молекулярных технологий и биохимии – биокомпьютер. Идут разработки нескольких типов биокомпьютеров, которые базируются на разных биологических процессах. Это, в первую очередь, находящиеся в стадии разработки ДНК- и клеточные биокомпьютеры.

ДНК-компьютеры

Как известно, в живых клетках генетическая информация закодирована в молекуле ДНК (дезоксирибонуклеиновой кислоты). ДНК – это полимер, состоящий из субъединиц, называемых нуклеотидами. Нуклеотид представляет собой комбинацию сахара (дезоксирибозы), фосфата и одного из четырех входящих в состав ДНК азотистых оснований: аденина (А), тимина (Т), гуанина (G) и цитозина (C). Молекула ДНК образует спираль, состоящую из двух цепей, объединенных водородными связями. При этом основание А одной цепи может соединяться водородными связями только с основанием Т другой цепи, а основание G – только с основанием С. То есть, имея одну из цепей ДНК, всегда можно восстановить строение второй. Благодаря этому фундаментальному свойству ДНК, получившему название комплементарности, генетическая информация может точно копироваться и передаваться от материнских клеток к дочерним. Репликация молекулы ДНК происходит за счет работы специального фермента ДНК-полимеразы. Этот фермент скользит вдоль ДНК и синтезирует на ее основе новую молекулу, в которой все основания заменены на соответствующие парные. Причем фермент начинает работать только если к ДНК прикрепился коротенький кусочек-затравка (праймер). В клетках существует также родственная молекуле ДНК молекула матричной рибонуклеиновой кислоты (РНК). Она синтезируется специальным ферментом, использующим в качестве образца одну из цепей ДНК, и комплементарна ей. Именно на молекуле РНК в клетке, как на матрице, с помощью специальных ферментов и вспомогательных факторов происходит синтез белков. Молекула РНК химически устойчивее, чем ДНК, поэтому экспериментаторам с ней работать удобнее. Последовательность нуклеотидов в цепи ДНК/РНК определяет генетический код. Единицей генетического кода – кодоном – является последовательность из трех нуклеотидов.

Ученые решили попытаться по примеру природы использовать молекулы ДНК для хранения и обработки данных в биокомпьютерах.

Первым из них был Леонард Эдлмен из Университета Южной Калифорнии (см.: "Molecular Computation of Solutions to Combinatorial Problems. Science, 1994, № 266, р. 1021), сумевший решить задачу гамильтонова пути. Суть ее в том, чтобы найти маршрут движения с заданными точками старта и финиша между несколькими городами (в данном случае семью), в каждом из которых разрешается побывать только один раз. "Дорожная сеть" представляет собой однонаправленный граф. Эта задача решается прямым перебором, однако при увеличении числа городов сложность ее возрастает экспоненциально. Каждый город Эдлмен идентифицировал уникальной последовательностью из 20 нуклеотидов. Тогда путь между любыми двумя городами будет состоять из второй половины кодирующей последовательности для точки старта и первой половины кодирующей последовательности для точки финиша (молекула ДНК, как и вектор, имеет направление). Синтезировать такие последовательности современная молекулярная аппаратура позволяет очень быстро. В итоге последовательность ДНК с решением составит 140 нуклеотидов (7x20).

Остается только синтезировать и выделить такую молекулу ДНК. Для этого в пробирку помещается около 100 триллионов молекул ДНК, содержащих все возможные 20-нуклеотидные последовательности, кодирующие города и пути между ними. Далее за счет взаимного притяжения нуклеотидов А-Т и G-C отдельные цепочки ДНК сцепляются друг с другом случайным образом, а специальный фермент лигаза сшивает образующиеся короткие молекулы в более крупные образования. При этом синтезируются молекулы ДНК, воспроизводящие все возможные маршруты между городами. Нужно лишь выделить из них те, что соответствуют искомому решению.

Эдлмен решил эту задачу биохимическими методами, последовательно удалив сначала цепочки, которые не начинались с первого города – точки старта – и не заканчивались местом финиша, затем те, что содержали более семи городов или не содержали хотя бы один. Легко понять, что любая из оставшихся после такого отбора молекула ДНК представляет собой решение задачи. (Подробнее см.: Боркус В. "ДНК – основа вычислительных машин". PC Week/RE, № 29-30/99, с. 29).

Вслед за работой Эдлмена последовали другие. Ллойд Смит из Университета Висконсин решил с помощью ДНК задачу доставки четырех сортов пиццы по четырем адресам, которая подразумевала 16 вариантов ответа. Ученые из Принстонского университета решили комбинаторную шахматную задачу: при помощи РНК нашли правильный ход шахматного коня на доске из девяти клеток (всего их 512 вариантов).

Ричард Липтон из Принстона первым показал, как, используя ДНК, кодировать двоичные числа и решать проблему удовлетворения логического выражения. Суть ее в том, что, имея некоторое логическое выражение, включающее n логических переменных, нужно найти все комбинации значений переменных, делающих выражение истинным. Задачу можно решить только перебором 2n комбинаций. Все эти комбинации легко закодировать с помощью ДНК, а дальше действовать по методике Эдлмена. Липтон предложил также способ взлома шифра DES (американский криптографический), трактуемого как своеобразное логическое выражение. Первую модель биокомпьютера, правда, в виде механизма из пластмассы, в 1999 г. создал Ихуд Шапиро из Вейцмановского института естественных наук. Она имитировала работу "молекулярной машины" в живой клетке, собирающей белковые молекулы по информации с ДНК, используя РНК в качестве посредника между ДНК и белком.

А в 2001 г. Шапиро удалось реализовать модель в реальном биокомпьютере (см.Programmable andautonomous computing machine made of biomoleciles, Nature, 2001, № 44, р. 430), который состоял из молекул ДНК, РНК и специальных ферментов. Молекулы фермента выполняли роль аппаратного, а молекулы ДНК – программного обеспечения. При этом в одной пробирке помещалось около триллиона элементарных вычислительных модулей. В результате скорость вычислений могла достигать миллиарда операций в секунду, а точность – 99,8%.

Пока биокомпьютер Шапиро может применяться лишь для решения самых простых задач, выдавая всего два типа ответов: "истина" или "ложь". В проведенных экспериментах за один цикл все молекулы ДНК параллельно решали единственную задачу. Однако потенциально они могут трудиться одновременно над разными задачами, в то время как традиционные ПК являются, по сути, однозадачными.

В конце февраля 2002 г. появилось сообщение, что фирма Olympus Optical претендует на первенство в создании коммерческой версии ДНК-компьютера, предназначенного для генетического анализа. Машина была создана в сотрудничестве с доцентом Токийского университета Акирой Тояма.

Компьютер, построенный Olympus Optical, имеет молекулярную и электронную составляющие. Первая осуществляет химические реакции между молекулами ДНК, обеспечивает поиск и выделение результата вычислений. Вторая – обрабатывает информацию и анализирует полученные результаты.

Анализ генов обычно выполняется вручную и требует много времени: при этом формируются многочисленные фрагменты ДНК и контролируется ход химических реакций. "Когда ДНК-компьютинг будет использоваться для генетического анализа, задачи, которые ранее выполнялись в течение трех дней, можно будет решать за шесть часов", – сказал сотрудник Olympus Optical Сатоши Икута.

В компании надеются поставить технологию генетического анализа на основе ДНК-компьютера на коммерческую основу. Она найдет применение в медицине и фармации. Ученые планируют внедрять молекулярные наноустройства в тело человека для мониторинга состояния его здоровья и синтеза необходимых лекарств.

Возможностями биокомпьютеров заинтересовались и военные. Американское агентство по исследованиям в области обороны DARPA выполняет проект, получивший название Bio-Comp (Biological Computations, биологические вычисления). Его цель – создание мощных вычислительных систем на основе ДНК. Попутно исследователи надеются научиться управлять процессами взаимодействия белков и генов. Для этого планируется создать мощный симулятор Bio-SPICE, способный средствами машинной графики визуализировать биомолекулярные процессы. Bio-SPICE планируется развивать на принципах открытых исходников (open source). Программа рассчитана на пять лет.

Клеточные компьютеры

Еще одним интересным направлением является создание клеточных компьютеров. Для этой цели идеально подошли бы бактерии, если бы в их геном удалось включить некую логическую схему, которая могла бы активизироваться в присутствии определенного вещества. Такие компьютеры очень дешевы в производстве. Им не нужна столь стерильная атмосфера, как при производстве полупроводников. И единожды запрограммировав клетку, можно легко и быстро вырастить тысячи клеток с такой же программой.

В 2001 г. американские ученые создали трансгенные микроорганизмы (т. е. микроорганизмы с искусственно измененными генами), клетки которых могут выполнять логические операции И и ИЛИ.

Специалисты лаборатории Оук-Ридж, штат Теннесси, использовали способность генов синтезировать тот или иной белок под воздействием определенной группы химических раздражителей. Ученые изменили генетический код бактерий Pseudomonas putidaтаким образом, что их клетки обрели способность выполнять простые логические операции. Например, при выполнении операции И в клетку подаются два вещества (по сути – входные операнды), под влиянием которых ген вырабатывает определенный белок. Теперь ученые пытаются создать на базе этих клеток более сложные логические элементы, а также подумывают о возможности создания клетки, выполняющей параллельно несколько логических операций.

Потенциал биокомпьютеров очень велик. По сравнению с обычными вычислительными устройствами они имеют ряд уникальных особенностей. Во-первых, они используют не бинарный, а тернарный код (так как информация в них кодируется тройками нуклеотидов). Во-вторых, поскольку вычисления производятся путем одновременного вступления в реакцию триллионов молекул ДНК, они могут выполнять до 1014 операций в секунду (правда, извлечение результатов вычислений предусматривает несколько этапов очень тщательного биохимического анализа и осуществляется гораздо медленнее). В-третьих, вычислительные устройства на основе ДНК хранят данные с плотностью, в триллионы раз превышающей показатели оптических дисков. И наконец, ДНК-компьютеры имеют исключительно низкое энергопотребление.

Однако в разработке биокомпьютеров ученые столкнулись с целым рядом серьезных проблем. Первая связана со считыванием результата – современные способы секвенирования (определения кодирующей последовательности) не совершенны: нельзя за один раз секвенировать цепочки длиной хотя бы в несколько тысяч оснований. Кроме того, это весьма дорогостоящая, сложная и трудоемкая операция.

Вторая проблема – ошибки в вычислениях. Для биологов точность в 1% при синтезе и секвенировании оснований считается очень хорошей. Для ИТ она неприемлема: решения задачи могут потеряться, когда молекулы просто прилипают к стенкам сосудов; нет гарантий, что не возникнут точечные мутации в ДНК, и т. п. И еще – ДНК с течением времени распадаются, и результаты вычислений исчезают на глазах! А клеточные компьютеры работают медленно, и их легко "сбить с толку". Со всеми этими проблемами ученые активно борются. Насколько успешно – покажет время.

Биокомпьютеры не рассчитаны на широкие массы пользователей. Но ученыенадеются, что они найдут свое место в медицине и фармации. Глава израильской исследовательской группы профессор Эхуд Шапиро уверен, что в перспективе ДНК-наномашины смогут взаимодействовать с клетками человека, осуществлять наблюдение за потенциальными болезнетворными изменениями и синтезировать лекарства для борьбы с ними.

Наконец, с помощью клеточных компьютеров станет возможным объединение информационных и биотехнологий. Например, они смогут управлять химическим заводом, регулировать биологические процессы внутри человеческого организма, производить гормоны и лекарственные вещества и доставлять к определенному органу необходимую дозу лекарств.

Первый биологический компьютер был создан в 1994 году. Он использовал ДНК в качестве носителя информации Основные направления в создании биокомпьютеров: Автоволновые на белковой пленке Автоволновые на белковой пленке Нейронные Нейронные Клеточные Клеточные На основе ДНК На основе ДНК

Рис.1. Структура билогического компьютера.

Принцип действия аналоговой ЭВМ

Аналоговая ЭВМ основаны на активных биологических плёнках, использующих специальным образом организованные химические реакции, например автоволновые Первую такую реакцию открыл советский ученый Б.Белоусов в 1956 году. В 1970 году А.Жаботинский и А.Заикин создали химически активную среду, где можно было наблюдать автоволновой химический процессор: тонкий слой раствора через определенные промежутки времени менял свою окраску Автоволновые колебания сопровождают нас повсюду. Это и передача информации в живом организме, и сокращение сердечной мышцы, и процессы активации катализаторов, и начальные этапы возникновение новых форм и структур у простейших организмов

Рис.2. Автоволновая реакция Белоусова -Жаботинского

Автоволны сохраняют постоянными такие свои характеристики, как период, длина волны, амплитуда и фаза Если мы возьмем молекулу белка размером 3050 A, то увидим, что перед нами активный элемент активной среды, который может находиться в нескольких устойчивых состояниях. Пусть по такой среде движется автоволна со скоростью 0.1 мм/с (хотя скорости автоволн могут быть больше). В пересчёте на цифровой вариант быстродействие устройства составит 10 6 операций в секунду. Если белковые молекулы прикрепить к плёнке, то кусочек её размером 1 см 2 может содержать свыше активных молекул. При движении плоской волны по такой плёнке каждую секунду будет происходить переключений. Определяющим оказывается сам процесс распространения автоволн, картина, возникающая при этом процессе, её трансформация, которой можно управлять с помощью различных "возмущающих" воздействий. Достаточно на "вход" подавать определенные возмущающие воздействия вид образующейся картины автоволновой реакции явится искомым решением задачи. То есть перед нами тот же аналоговый процессор.

Нейронная микросхема Группе учёных из мюнхенского Института биохимии имени Макса Планка удалось создать первый в мире нейрочип. Такая микросхема сочетает в себе электронные элементы и нервные клетки. Взяв нейроны улитки, ученые закрепили их на кремниевом чипе при помощи микроскопических пластмассовых держателей. В итоге каждая клетка оказалась соединена как с соседними клетками, так и с чипом. Подавая через чип на определённую клетку электрические импульсы, можно управлять всей системой Нейрочипы позволят создать более совершенные, способные к обучению компьютеры, а также протезы для замены повреждённых участков мозга и высокочувствительные биосенсоры.

Рис.5. Нейрочип

Биочипы

Наиболее популярны в настоящее время биочипы на основе кДНК, ставшие по- настоящему революционной технологией в биомедицине. Определяющей технологической идеей стало применение стеклянной подложки для нанесения генетического материала, что сделало возможным помещать на нее ничтожно малые его количества и очень точно определять местоположение конкретного вида тестируемой ДНК. Для приготовления биочипов стали использоваться роботы, применяемые прежде в микроэлектронике для создания микросхем.

Рис. 6. Робот для приготовления биочипов

. Технология Молекулы ДНК каждого типа создаются в достаточном количестве копий с помощью процесса, называемого амплификацией; этот процесс также может быть автоматизирован, для чего используется специальный робот - умножитель. После этого полученный генетический материал наносится в заданную точку на стекле и химически к стеклу прикрепляется (иммобилизация). Для иммобилизации генетического материала необходима первичная обработка стекла, а также обработка напечатанного биочипа ультрафиолетом, стимулирующим образование химических связей между стеклом и молекулами ДНК.

Рис. 7. Технология биочипов

Постановка эксперимента с биочипом Из клетки выделяется смесь продуктов работы генов, т. е. РНК различных типов, производимых в определенных условиях. Результатом эксперимента и является знание того, продукты каких именно генов появляются в клетке в условиях, интересующих исследователя. Молекулы каждого типа РНК связываются с единственным типом молекул из иммобилизованных на биочипе. Те молекулы, которые не связались, смывают. Для определения того, к каким из иммобилизованных на чипе молекул нашлись «партнеры» в исследуемой клетке, экспериментальная и контрольная РНК метится флуоресцирующими красителями.

Рис. 8. Флуоресцентное свечение связанных исследуемой и контрольной РНК (ДНК)

Биопреобразователи

Белковый биодатчик Допустим, что на "вход" ЭВМ, следящей за ходом какого-нибудь технологического процесса, поступают определенные химические вещества, подлежащие обнаружению и анализу. Датчик должен зарегистрировать их концентрацию и выдать определенный сигнал. При этом молекулы иммобилизованного, присоединенного к подложке белка, улавливая молекулы или атомы других веществ, меняют свои размеры расширяются или сжимаются, что легко фиксируется. Затем датчик "отмывается", сбрасывает присоединенное вещество и возвращается в исходное положение.

Рис. 9. Схема работы белкового хемомеханического биопреобразователя: 1 - молекула белка; 2 - ковалентные сшивки; 3 - молекула "постороннего"вещества, на появление которой реагирует датчик, изменяя свои размеры.

память биокомпьютера

Запись информации на биоматериал Стало ясно, что на основе материалов с такой высокой разрешающей способностью (ведь цвет меняет единичная молекула!) в сочетании с лазерной техникой, которая способна обеспечить быструю запись и стирание информации, можно создать уникальные запоминающие устройства. Предельная ёмкость памяти таких устройств бит/см 3. Колоссальная цифра! Это значит, что на диске из подобного фотоносителя размером с долгоиграющую пластинку можно записать текст нескольких десятков тысяч книг!

Рис. 10. Схема записи информации на биологический фоторегистрирующий материал, созданный на основе белка бактериородопсина.

Первый коммерческий биокомпьютер В конце февраля 2002 г. появилось сообщение, что фирма Olympus Optical претендует на первенство в создании коммерческой версии ДНК-компьютера, предназначенного для генетического анализа. Компьютер, построенный Olympus Optical, имеет молекулярную и электронную составляющие. Первая осуществляет химические реакции между молекулами ДНК, обеспечивает поиск и выделение результата вычислений. Вторая – обрабатывает информацию и анализирует полученные результаты.

Рис. 11. ДНК-компьютер фирмы Olympus Optical

Тест к разделу биокомпьютеры

В каком году был создан первый биокомпьютер ?

1986

1990

1978

1994

Кто был первооткрывателем автоволновой реакции?

1. Белоусов

2. Фромгерц

3. Макс Планк

4. Жаботинский

Какая компания использовала строматолитовые водоросли в самоорганизующейся сети?

2. British Telecom

1. Phillips

3. Olympus Optical

Учёные из мюнхенского Института биохимии имени Макса Планка создали первый в мире:

1. Биочип

2. Биодатчик

3. Нейрочип

4. Клеточный компьютер

Сколько переключений в секунду будет происходить при движении автоволны по белковой плёнке

Укажите несуществующий тип биочипа:

1. Олигонуклеотидный

2. На основе кДНК

3. Мононуклеотидный

Для нанесения генетического материала используют подложки из:

1. Керамики

2. Графита

3. Стекла

4. Пластмассы

Процесс химического прикрепления молекул ДНК к стеклянной подложке называется:

1. Обездвиживание

2. Иммобилизация

3. Стопорение

Чем стимулируют образование связей между ДНК и стеклом:

1. Инфракрасным излучением

2. Ультразвуком

3. Рентгеновскими лучами

4. Ультрафиолетовым излучением

Для определения связанных друг сдругом молекул ДНК и РНК используют:

- Меченые электроны

-Флуоресцентные красители

-Радиоактивное излучение

-Лазер

Что изменяет биодатчик при внешнем воздействии?

-Величину магнитного поля

- Размеры или цвет

-Величину магнитного поля или цвет

- Размеры и величину электрического поля

В каком году была получена пленка из бактериодопсина?

1985

1990

1978

2000

Емкость памяти на бактериодопсине составляет:

Комментарии (0)


avatar

Чтобы оставить комментарий войдите или зарегистрируйтесь



История компьютерной техники и IT технологий

Термины: История компьютерной техники и IT технологий