Лекция
Привет, мой друг, тебе интересно узнать все про рефлексные агенты, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое рефлексные агенты , настоятельно рекомендую прочитать все из категории Интеллектуальные агенты . Многоагентные системы.
Простейшим видом агента является простой рефлексный агент. Подобные агенты выбирают действия на основе текущего акта восприятия, игнорируя всю остальную историю актов восприятия. Программа для данного агента приведена в листинге. function Reflex-Vacuum-Agent([location,status]) returns действие Обратите внимание на то, что эта программа агента-пылесоса действительно очень мала по сравнению с соответствующей таблицей. Наиболее очевидное сокращение обусловлено тем, что в ней игнорируется история актов восприятия, в результате чего количество возможных вариантов сокращается от 4T просто до 4. Дополнительное небольшое сокращение обусловлено тем фактом, что если в текущем квадрате имеется мусор, то выполняемое при этом действие не зависит от местонахождения пылесоса. Представьте себя на месте водителя автоматизированного такси. Если движущийся впереди автомобиль тормозит и загораются его тормозные огни, то вы должны заметить это и тоже начать торможение. Иными словами, над визуальными входными данными выполняется определенная обработка для выявления условия, которое обозначается как "car-in-front-is-braking" (движущийся впереди автомобиль тормозит). Затем это условие активизирует некоторую связь с действием и initiate-braking" (начать торможение), установленную в программе агента. Такая связь называется правилом условие—действие и записывается следующим образом: if car-in-front-is-braking then initiate-braking Люди также используют большое количество таких связей, причем некоторые из них представляют собой сложные отклики, освоенные в результате обучения (как при вождении автомобиля), а другие являются врожденными рефлексами (такими как моргание, которое происходит при приближении к глазу постороннего предмета). Об этом говорит сайт https://intellect.icu . В разных главах данной книги будет показано несколько различных способов, с помощью которых можно организовать обучение агента и реализацию таких связей. Программа, приведенная в листинге, специализирована для одной конкретной среды пылесоса. Более общий и гибкий подход состоит в том, чтобы вначале создать интерпретатор общего назначения для правил условие-действие, а затем определить наборы правил для конкретной проблемной среды. На рисунке приведена структура такой общей программы в схематической форме и показано, каким образом правила условие-действие позволяют агенту создать связь от восприятия к действию. (Не следует беспокоиться, если такой способ покажется тривиальным; вскоре он обнаружит намного более интересные возможности.) В подобных схемах для обозначения текущего внутреннего состояния процесса принятия решения агентом используются прямоугольники, а для представления фоновой информации, применяемой в этом процессе, служат овалы. Программа этого агента, которая также является очень простой, приведена в листинге. Функция Interpret-Input вырабатывает абстрагированное описание текущего состояния по результатам восприятия, а функция Rule-Match возвращает первое правило во множестве правил, которое соответствует заданному описанию состояния. Следует отметить, что приведенное здесь изложение в терминах «правил» и «соответствия» является чисто концептуальным; фактические реализации могут быть настолько простыми, как совокупность логических элементов, реализующих логическую схему.
function Simple-Reflex-Agent(percept) returns действие action Простые
рефлексные агенты характеризуются той замечательной особенностью, что они чрезвычайно просты, но зато обладают весьма ограниченным интеллектом. Агент, программа которого приведена в листинге, работает, только если правильное решение может быть принято на основе исключительно текущего восприятия, иначе говоря, только если среда является полностью наблюдаемой. Внесение даже небольшой доли ненаблюдаемости может вызвать серьезное нарушение его работы.
Возникновение аналогичной проблемы можно обнаружить и в мире пылесоса. Предположим, что в простом рефлексном агенте-пылесосе испортился датчик местонахождения и работает только датчик мусора. Такой агент получает только два возможных восприятия: [Dirty] и [Clеаn]. Он может выполнить действие Suck в ответ на восприятие [Dirty], а что он должен делать в ответ на восприятие [Clean]? Выполнение движения Left завершится отказом (на неопределенно долгое время), если окажется, что он начинает это движение с квадрата А, а если он начинает движение с квадрата в, то завершится отказом на неопределенно долгое время движение Right. Для простых рефлексных агентов, действующих в частично наблюдаемых вариантах среды, часто бывают неизбежными бесконечные циклы. |
Если я не полностью рассказал про рефлексные агенты? Напиши в комментариях Надеюсь, что теперь ты понял что такое рефлексные агенты и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Интеллектуальные агенты . Многоагентные системы
Из статьи мы узнали кратко, но содержательно про рефлексные агенты
Комментарии
Оставить комментарий
Интеллектуальные агенты . Многоагентные системы
Термины: Интеллектуальные агенты . Многоагентные системы