Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Альтернативная биохимия CHNOPS

Лекция



Привет, Вы узнаете о том , что такое альтернативная биохимия, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое альтернативная биохимия , настоятельно рекомендую прочитать все из категории Общая химия.

альтернативная биохимия — ряд теорий и гипотез, объясняющих возможность существования форм жизни частично или полностью отличающихся биохимически от возникших на Земле. Обсуждаемые в рамках гипотез отличия включают замену углерода в молекулах органических веществ на иные атомы, либо замена воды в качестве универсального растворителя другими жидкостями. Подобные явления нередко описываются в фантастической литературе.

Параметры дискуссии

Возможность биохимически иной жизни, является общей темой научной фантастики, но она также рассматривается в научно-исследовательском контексте. Недавним примером такого обсуждения является отчет за 2007 год об ограничивающих условиях жизни, подготовленный комитетом в составе ученых при Национальном исследовательском совете Соединенных Штатов. Этот комитет под председательством Джона А. Бароса рассматривал «гипотетическую альтернативную химию жизни», включая ряд растворителей, которые могли бы стать альтернативой воде. В проекте под названием: «Пределы органической жизни в планетных системах» постулируется, что:

На сегодняшний день при поиске внеземной жизни руководствуются моделью жизни, основанной на жизни, которую мы наблюдаем на Земле. Некоторые особенности земной жизни привлекли особое внимание:

  • Земная жизнь использует воду в качестве растворителя;
  • Она построенa из клеток и использует метаболизм, который фокусируется на карбонильной группе (Альтернативная биохимия CHNOPS);
  • Это термодинамически диссипативный процесс, использующий химико-энергетические градиенты;
  • Земная жизнь использует архитектуру с двумя биополимерами, которая использует нуклеиновые кислоты для выполнения большинства генетических функций и белки для выполнения большинства каталитических функций.

Как следствие, большая часть планируемых миссий НАСА сосредоточена на местах, где возможно пребывание воды в жидком виде, и в ней делается акцент на поисках структур, подобных клеткам земных организмов. Этот подход был бы оправдан, учитывая отсутствие общего понимания того, как может выглядеть жизнь, имеющая происхождение, независимое от Земли. Однако лабораторные эксперименты дают основание ожидать, что жизнь может основываться и на молекулярных структурах, существенно отличающихся от земных.

Замена наиболее важных химических элементов

Акроним CHNOPS, расшифровывающийся как Carbon (углерод), Hydrogen (водород), Nitrogen (азот), Oxygen (кислород), Phosphorus (фосфор) и Sulfur (сера), представляет шесть наиболее важных химических элементов, чьи ковалентные комбинации составляют большую часть биологических молекул на Земле . Сера используется в аминокислотах цистеин и метионин . Фосфор — необходимый элемент в формировании фосфолипидов — подкласса липидов —, являющихся главным компонентом всех клеточных мембран, так как они могут формировать двойные липидные слои, сохраняющие ионы, протеины и другие молекулы там, где они нужны для выполнения функций клетки, и предотвращают от их проникновения в те зоны, где их быть не должно. Фосфатные группы также являются необходимым компонентом основы нуклеиновых кислот .

Элементный состав биомолекул:
C H N O P S
Углеводы X X X
Жиры X X X
Фосфолипиды X X X X X
Белки X X X X X
Нуклеотиды X X X X X
Порфирины X X X X

Все виды живых организмов, известные в настоящее время, используют углеродные соединения для основных структурных и метаболических функций, воду в качестве растворителя и ДНК или РНК для определения и контроля их формы. Если жизнь существует на других планетах, она может быть химически похожа. Также возможно, что существуют организмы с совершенно разными химическими составами. Существование или, по крайней мере, реальность этих форм биохимии еще не была выявлена.

Относительное содержание различных элементов очень важно для определения возможности их участия в биохимии. Для справки, вот пятнадцать элементов, наиболее распространенных в человеческом теле (то есть тех, которые составляют не менее 0,0001 % от него) и в других системах, измеренных числом атомов.

Относительное содержание элементов (мольная доля элементов) в различных системах :

Z Элемент Вселенная В земной корe Морская вода Тело человека Биологическая роль
1 Водород 93 % 3,1 % 66,2 % 62 % Органические молекулы
8 Кислород 0,08 % 60 % 33,1 % 24 % органические молекулы, дыхание
6 Углерод 0,05 % 0,31 % 0,00144 % 12 % Органические молекулы
7 Азот 0,009 % 0,0029 % <0,0001 % 0,22 % аминокислоты, нуклеиновые кислоты
15 Фосфор <0,0001 % 0,07 % <0,0001 % 0,22 % АТФ, нуклеиновые кислоты, Фосфолипиды
20 Кальций 0,0002 % 2,6 % <0,0001 % 0,22 % кальмодулин , биоминерализация
16 Сера 0,002 % 0,027 % 0,0179 % 0,039 % некоторые аминокислоты, например цистеин
11 Натрий 0,0001 % 2,1 % 0,297 % 0,038 % натрий-калиевый насос
19 Калий <0,0001 % 0,78 % 0,00658 % 0,032 % натрий-калиевый насос
17 Хлор <0,0001 % 0,01 % 0,347 % 0,021 % Хлор-транспортная АТФаза (Протонный насос)
12 Магний 0,003 % 2,5 % 0,0337 % 0,007 % хлорофилл
14 Кремний 0,003 % 20 % <0,0001 % 0,0058 % биоминерализация
9 Фтор <0,0001 % 0,059 % <0,0001 % 0,0012 % фторапатит (зубная эмаль)
26 Железо 0,002 % 2,3 % <0,0001 % 0,00067 % гемоглобин, цитохромы
30 Цинк <0,0001 % 0,0025 % <0,0001 % 0,00032 % протеины с цинковыми пальцами

Замена углерода

Ученые немало высказывались на тему возможности построения органических молекул с помощью других атомов, но никто не предложил теорию, описывающую возможность воссоздания всего многообразия соединений, необходимых для существования жизни.

Кремний и кислород

Среди наиболее вероятных претендентов на роль структурообразующего атома в альтернативной биохимии называют кремний. Он находится в той же группе периодической системы, что и углерод, их свойства во многом схожи. Как и углерод, кремний может создавать достаточно большие молекулы, чтобы нести биологическую информацию . Однако атом кремния имеет бо́льшие массу и радиус. Образование кремнием двойных или тройных ковалентных связей сравнительно затруднено, что может помешать образованию биополимеров. Кремний, в отличие от углерода, не обладает способностью образовывать химические связи с различными типами атомов, что необходимо для химической универсальности, необходимой для метаболизма, и тем не менее именно эта неспособность делает кремний менее восприимчивым к связыванию со всеми видами примесей. Элементы, создающие органические функциональные группы с углеродом, включают водород, кислород, азот, фосфор, серу и металлы, такие как железо, магний и цинк. Кремний, с другой стороны, взаимодействует с очень немногими другими типами атомов. Соединения кремния не могут быть настолько разнообразны, как соединения углерода.

Это связано с тем, что атомы кремния намного больше, имеют большую массу и атомный радиус, и поэтому им трудно образовывать двойные связи (углерод с двойной связью является частью карбонильной группы, фундаментального мотива биоорганических соединений на основе углерода).

Альтернативная биохимия CHNOPS
Структура силана, аналог метана.
Альтернативная биохимия CHNOPS
Структура силиконового полидиметилсилоксана (ПДМС).

Преимуществом, которое может привести к существованию вариантов биохимии на основе кремния, являются его цеолиты — соединения, которые используются в химии и могут фильтровать и катаболизировать вещества аналогично углеродным ферментам. Основные механизмы жизни на нашей планете возможны благодаря ферментам, — катализаторам с соответствующими им носителями (белками). В процессе эволюции биосферы сформировалась целая коллекция из них, каждый из которых специализируется на функции, как например гемоглобин, отвечающий за обмен кислорода, или ферредоксин, миссия которого заключается в электронном переносе. Первоначальная идея — заменить эти ферменты молекулами на основе кремния. Эти материалы представляют собой разновидность глин, которые имеют молекулярную структуру в виде трехмерной сетки, образованной тетраэдрами из Альтернативная биохимия CHNOPS и Альтернативная биохимия CHNOPS, соединенных вместе. Эта решетка имеет поры и полости молекулярного размера, поэтому их могут пересекать только те молекулы, которые имеют достаточно малый размер. Вот почему их также называют молекулярными ситами. Цеолиты имеют большое количество структурных сходств с природными белками. При использовании этих сходств могут образовываться разные катализаторы, которые сочетают в себе характеристики стойкости и химической стабильности цеолитов с высокой селективностью и молекулярной активностью ферментов. В Центральном департаменте исследований и разработок компании DuPont были получены цеолиты, способные моделировать поведение гемоглобина, цитохрома P450 и железо-серного белка.

Как и углерод, кремний может образовывать четыре устойчивые связи с самим собой и другими элементами, а также длинные химические цепи, известные как силановые полимеры, которые очень похожи на углеводороды, необходимые для жизни на Земле. Кремний более активен, чем углерод, что делает его оптимальным для экстремально холодных условий.[10][11] Соединения кремния могут быть биологически полезными при температурах или давлениях, отличных от таковых на поверхности Земли, в роли (либо в сочетании), которая менее прямо аналогична углероду. Полисиланолы, подобные сахарам, растворимы в жидком азоте, что позволяет предположить, что они могут играть роль в биохимии при очень низких температурах. Силаны — соединения кремния и водорода, подобные алканам, менее устойчивы чем углеводороды. Силаны самопроизвольно горят в кислород-содержащей атмосфере при относительно низких температурах, поэтому кислородная атмосфера может быть смертельной для жизни на основе кремния. С другой стороны, стоит учитывать, что алканы, как правило, довольно легко воспламеняются, но жизнь на основе углерода на Земле не накапливает энергию непосредственно в виде алканов, но в виде сахаров, липидов, спиртов и других углеводородных соединений с совершенно разными свойствами. Вода как растворитель также будет реагировать с силанами. Но, опять же, это имеет значение только в том случае, если по каким-либо причинам силаны используются или массово производятся такими организмами.

В то же время, силиконы — полимеры, включающие цепочки чередующихся атомов кремния и кислорода, более жаропрочны. На этом основании предполагается, что кремниевая жизнь может существовать на планетах со средней температурой, значительно превышающей земную. В этом случае, роль универсального растворителя должна играть не вода, а соединения со значительно более высокой температурой кипения.

Так, например, предполагается, что соединения кремния будут стабильнее углеродных молекул в среде серной кислоты, то есть в условиях, которые могут существовать на других планетах[12]. В целом же, сложные молекулы с кремниево-кислородной цепью менее устойчивы по сравнению с углерод-кислородными аналогами. Углеводородов и органических соединений много в метеоритах, кометах и ​​межзвездных облаках, в то время как их кремниевые аналоги никогда не встречались в природе. Кремний, однако, образует сложные одно-, двух- и трехмерные полимеры, в которых атомы кислорода образуют мостики между атомами кремния. Они называются силикатами. Они устойчивы и распространены в земных условиях и были предложены в качестве основы для предуглеродной формы эволюции на Земле.

Диоксид кремния (основной компонент песка), являющийся аналогом углекислого газа, представляет собой твердое, малорастворимое вещество. Это создает трудности для поступления кремния в биологические системы, основанные на водных растворах, даже если окажется возможным существование биологических молекул на его основе. Схожaя ситуация и с существующими наземными растениями. Например рис способен накапливать до 10 % кремния от сухого веса побегов, что находится в диапазоне или даже выше, чем уровни основных макронутриентов, таких как азот, фосфат и калий. Недавно были выявлены два переносчика (Lsi1 и Lsi2), ответственные за высокую способность риса к усвоению кремния[13]. Lsi1 относится к подгруппе аквапоринов внутреннего белка nodulin-26 (NIP III) и является переносчиком кремниевой кислоты[14]. Как и другие макронутриенты кремний недоступен растениям будучи нерастворим в воде. Однако растения как и в случае с азотом используют природные биоудобрения — напр. азотофиксирующие бактерии, которые переводят атмосферный азот в связанное состояние, что делает его доступным для потребления растениями и с которыми растения зачастую состоят в симбиозе. Организмы на основе кремния, если они дышат кислородом, вероятно, выделяют диоксид кремния (Альтернативная биохимия CHNOPS) в качестве побочного продукта, подобно тому как углеродные организмы выделяют диоксид углерода — Альтернативная биохимия CHNOPS, Однако в отличие от диоксида углерода диоксид кремния был бы в твердом состоянии и поэтомy мог бы забить дыхательные пути песком. Можно однако представить выделительные органы, сравнимые с почками, которые в случае этой гипотетической биохимии удаляют из организма своего рода силикатный гель. Ведь в качестве отходов азотные соединения у животных удаляются в основном в виде мочевины. Об этом говорит сайт https://intellect.icu . Или же силикатные соединения могут выделятся в твердой форме, как например некоторые ящерицы обитающие в пустыне, выделяют мочевую кислоту через ноздри[комм. 1]. Диоксид кремния (учитывая примеси, всегда присутствующие в живых тканях и, вероятно, препятствующие кристаллизации) находится в агрегатном состоянии от жидкого до так называемого стеклообразного, поэтому становится тем жиже, чем выше температура. Тогда кремниевая жизнь может состоять из расплава «кремниево-биологических молекул» в диоксиде кремния в широком температурном диапазоне.

При всем разнообразии молекул, которые были обнаружены в межзвездной среде, 84 основаны на углероде и лишь 8 — на кремнии[15]. Более того, из этих 8 соединений 4 включают углерод. (Это косвенно указывает на небольшую возможность промежуточного — кремний-углеродного — варианта биохимии.) Примерное соотношение космического углерода к космическому кремнию — 10 к 1. Это дает основание предполагать, что сложные углеродные соединения более распространены во Вселенной, уменьшая шанс формирования жизни на основе кремния, по крайней мере в тех условиях, что можно ожидать на поверхностях планет с условиями подобными земным.

На Земле, как и на других планетах земной группы, много кремния и очень мало углерода. Однако, земная жизнь развилась на основе углерода. Это свидетельствует в пользу того, что углерод более подходит для формирования биохимических процессов на планетах, подобных нашей. Остается возможность того, что при других комбинациях температуры и давления кремний может участвовать в формировании биологических молекул в качестве замены углероду.

Химики неустанно работали над созданием новых соединений кремния, с тех пор как Фредерик Стэнли Киппинг (Frederic Kipping) (1863—1949) показал, что действительно можно сделать несколько интересных соединений. Самая высокая международная премия в области химии кремниевых соединений называется Kipping Award. Но, несмотря на годы работы — и несмотря на все реагенты, доступные современным ученым — многие кремниевые аналоги углеродных соединений просто не могут быть получены. Термодинамические данные подтверждают, что эти аналоги часто слишком нестабильны или слишком реактивны.

Кремнезем в морской и пресной воде

В воде кремнезем присутствует в виде кремниевой кислоты:

Альтернативная биохимия CHNOPS, либо Альтернативная биохимия CHNOPS.

При увеличении концентрации раствора при pH менее 9 или при уменьшении pH насыщенного раствора, кремниевая кислота выпадает в осадок в виде аморфного кремнезема. Хотя кремний один из наиболее распространенных элементов земной коры, его доступность для диатомей ограничена растворимостью. Среднее содержание кремния в морской воде — около 6ppm. Морские диатомовые быстро исчерпывают запасы растворенного кремнезема в поверхностном слое воды, и это ограничивает их дальнейшее размножение.

Следует отметить, что соединения кремния (в частности диоксид кремния) используются некоторыми организмами на Земле. Из них свой панцирь формируют диатомовые водоросли, получая кремний из воды. В качестве структурного материала соединения кремния также используют радиолярии, некоторые губки и растения. Кремний также входит в состав соединительной ткани человека.

25 ноября 2016 года в журнале Science, исследователи сообщили[16], что открыты белки, обычно содержащиеся в бактериях исландских горячих источников, которые могут образовывать молекулы с углерод-кремниевыми связями в живых клетках. «То, что существует в природе, уже готово для создания этой совершенно новой химии и делает это относительно хорошо», — говорит соавтор Фрэнсис Арнольд, инженер-химик из Калифорнийского технологического института в Пасадене. «Это открывает путь к созданию соединений, которые природа никогда не делала раньше. Вскоре мы сможем узнать, какие затраты и выгоды они дают живым биосистемам». «Это ни в коем случае не идентичная замена», — говорит Арнольд. «Жизнь в нормальных условиях на этой планете, вероятно, не будет работать с кремнием. Предположительно, мы могли бы создать компоненты жизни, включающие кремний — возможно, кремниевый жир или кремнийсодержащие белки — и спросить, как жизнь с этим связана?… Обеспечивает ли это новые функции, которых раньше не было в жизни?»

Также в ноябре 2016 г. было объявлено, что та же команда ученых «вывела» бактериальный белок, который может создавать искусственные кремний-углеродные связи. «Мы решили заставить природу делать то, что могут делать только химики, — только лучше», — говорит Фрэнсис Арнольд. Это исследование также является первым, показывающим, что природа может адаптироваться для включения кремния в молекулы на основе углерода, строительные блоки жизни. «Ни один живой организм не соединяет воедино кремний-углеродные связи, даже несмотря на то, что кремния так много вокруг нас..», — говорит Дженнифер Кан, научный сотрудник лаборатории Арнольда. Исследователи использовали метод, называемый направленной эволюцией, впервые предложенный Арнольдом в начале 1990-х годов, при котором новые и более совершенные ферменты создаются в лабораториях путем искусственного отбора, подобно тому, как селекционеры модифицируют кукуруз. Ферменты — это класс белков, которые катализируют или облегчают химические реакции. Направленный процесс эволюции начинается с фермента, который ученые хотят улучшить. ДНК, кодирующая фермент, видоизменяется более или менее случайным образом, и полученные ферменты проверяются на желаемый признак. Затем наиболее эффективный фермент снова мутируется, и процесс повторяется до тех пор, пока не будет создан фермент, который работает намного лучше оригинала.

Идеальным кандидатом оказался белок из бактерии, которая растет в горячих источниках Исландии. Этот белок, называемый цитохромом с, обычно передает электроны другим белкам, но исследователи обнаружили, что он также действует как фермент, создавая связи кремний-углерод на низких уровнях. Затем ученые мутировали ДНК, кодирующую этот белок, в области, которая определяет железосодержащую часть белка, которая, как считается, отвечает за его активность по формированию связи кремний-углерод. Затем они протестировали эти мутантные ферменты на их способность создавать кремнийорганические соединения лучше, чем исходные.

Всего за три серии испытаний они создали фермент, который может избирательно создавать связи кремний-углерод в 15 раз эффективнее, чем лучший катализатор, изобретенный химиками. Что касается вопроса о том, может ли жизнь эволюционировать, чтобы использовать кремний самостоятельно, Арнольд говорит, что это зависит от природы. «Это исследование показывает, насколько быстро природа может адаптироваться к новым вызовам», — говорит она. «Закодированный ДНК каталитический механизм клетки может быстро научиться стимулировать новые химические реакции, если мы предоставим новые реагенты и соответствующий стимул в виде искусственного отбора. Природа могла бы сделать это сама, если бы ей было угодно».[17]

Азот и фосфор

Азот и фосфор считают другими претендентами на роль основы для биологических молекул. Как и углерод, фосфор может составлять цепочки из атомов, которые в принципе могли бы образовывать сложные макромолекулы, если бы он не был таким активным. Однако в комплексе с азотом возможно образование более сложных ковалентных связей, что делает возможным возникновение большого разнообразия молекул, включая кольцевые структуры.

В атмосфере Земли азота около 78 %, однако в силу инертности двухатомного азота энергетическая «цена» образования трехвалентной связи слишком высока. В то же время некоторые растения могут связывать азот из почвы в симбиозе с анаэробными бактериями, живущими в их корневой системе. В случае присутствия в атмосфере значительного количества диоксида азота или аммиака доступность азота будет выше. В атмосфере других планет, кроме того, могут существовать и другие оксиды азота.

Подобно растениям на Земле (например, бобовым), инопланетные формы жизни могли бы усваивать азот из атмосферы. В таком случае мог бы сформироваться процесс наподобие фотосинтеза, когда энергия ближайшей звезды тратилась бы на образование аналогов глюкозы с выделением кислорода в атмосферу. В свою очередь, животная жизнь, стоящая выше растений в пищевой цепочке, усваивала бы из них питательные вещества, выделяя диоксид азота в атмосферу и соединения фосфора в почву.

В аммиачной атмосфере растения с молекулами на основе фосфора и азота получали бы соединения азота из окружающей их атмосферы, а фосфор — из почвы. В их клетках происходило бы окисление аммиака для образования аналогов моносахаридов, водород бы выделялся в качестве побочного продукта. В данном случае животные будут вдыхать водород, расщепляя аналоги полисахаридов до аммиака и фосфора, то есть энергетические цепочки формировались бы в обратном направлении по сравнению с существующими на нашей планете (у нас вместо аммиака в данном случае распространен бы был метан).

Споры на эту тему далеко не окончены, так как некоторые этапы цикла на основе фосфора и азота являются энергодефицитными. Также представляется спорным, что во Вселенной соотношения этих элементов встречаются в необходимой для возникновения жизни пропорции.

Азот и бор

Атомы азота и бора, находящиеся в «связке», в определенной степени имитируют связь «углерод—углерод». Так, известен боразол Альтернативная биохимия CHNOPS, который иногда называют «неорганическим бензолом» (правильнее его было бы наречь «неуглеродным бензолом»). Но все же на основе комбинации бора с азотом невозможно создать все то разнообразие химических реакций и соединений, известных в химии углерода. Тем не менее, принципиальную возможность такой замены в виде каких-то отдельных фрагментов искусственных (или инопланетных) биомолекул нельзя полностью исключать.

Азот и водород

При очень высоком давлении (~460 ГПа) соединения азота и водорода химически даже более разнообразны, чем углеводороды, что открывает перспективы существования их производных более разнообразных и многочисленных, чем все существующие органические соединения и возможно даже жизни, построенная на альтернативной азотоводородной химии. Подходящие условия для существования азотоводородной биохимии могут встречаться в недрах планет гигантов, в которых содержатся огромные количества азота и водорода под таким давлением

Замена фосфора Жизнь на основе мышьяка

В декабре 2010 года исследователь из НАСА Astrobiology Research Фелиса Вольфе-Симон (англ. Felisa Wolfe-Simon) сообщила об открытии бактерии GFAJ-1 из рода Halomonadaceae, способной при определенных условиях заменять фосфор мышьяком[20][21][22].

Мышьяк, который химически похож на фосфор, хотя и является ядовитым для большинства форм жизни на Земле, включен в биохимию некоторых организмов. Некоторые морские водоросли включают мышьяк в сложные органические молекулы, такие как арсеносахары и арсенобетаины. Грибы и бактерии могут производить летучие соединения метилированного мышьяка. Восстановление арсената и окисление арсенита наблюдались у микробов (Chrysiogenes arsenatis). Кроме того, некоторые прокариоты могут использовать арсенат в качестве концевого акцептора электронов во время анаэробного роста, а некоторые могут использовать арсенит в качестве донора электронов для генерации энергии.

Было высказано предположение, что самые ранние формы жизни на Земле могли использовать биохимию мышьяка вместо фосфора в структуре их ДНК. Общее возражение против этого сценария состоит в том, что сложные эфиры арсената настолько менее устойчивы к гидролизу, чем соответствующие сложные эфиры фосфата, что мышьяк просто не подходит для этой функции.

Авторы геомикробиологического исследования 2010 года, частично поддержанного НАСА, предположили, что бактерия, названная GFAJ-1 , собранная в отложениях озера Моно в восточной Калифорнии, может использовать такую ​​"мышьяковую ДНК" при культивировании без фосфора. Они предположили, что бактерия может использовать высокие уровни поли-β-гидроксибутирата или других средств для снижения эффективной концентрации воды и стабилизации сложных эфиров арсената. Эта гипотеза была подвергнута резкой критике почти сразу после публикации за предполагаемое отсутствие соответствующих мер контроля зa экспериментами. Научный писатель Карл Зиммер связался с несколькими учеными для оценки: «Я обратился к дюжине экспертов… Почти единодушно, они думают, что ученые НАСА не смогли обосновать свое мнение». Другие авторы не смогли воспроизвести свои результаты и показали, что в исследовании были проблемы с загрязнением фосфатом, что позволяет предположить, что присутствующие низкие количества могут поддерживать экстремофильные формы жизни. В качестве альтернативы было высказано предположение, что клетки GFAJ-1 растут путем рециркуляции фосфата из деградированных рибосом, а не путем замены его на арсенат. Pезультаты последующих экспериментаторов опровергли теорию о включении мышьяка в состав ДНК[23][24].

Почетный член Фонда прикладной молекулярной эволюции (США) Стивен Беннер (Steven Benner), отметил в своем выступлении на пресс-конференции в штаб-квартире НАСА, что хотя мышьяк своей химией напоминает фосфор, но все-таки он, будучи встроен в структуру ДНК и РНК, является «слабым звеном», так как формируемые им химические связи легко ломаются из-за высокой реакционной способности атома мышьяка.

В то же самое время повышенная реакционная способность мышьяка, негативно влияющая на стабильность биологических молекул при комнатной температуре, может оказаться полезной в том случае, если биологическая молекула должна выполнять свои функции при низких температурах, таких, например, как на спутнике Сатурна Титане.

Теории о возможности жизни на Титане были выдвинуты в 2005 году на основании недавно полученных наблюдений, однако Титан значительно холоднее, чем Земля, поэтому на его поверхности нет жидкой воды. Однако с другой стороны на Титане имеются озера жидкого метана и этана, а также реки и целые моря из них, кроме того, они могут выпадать в виде осадков, как дождь из воды на Земле. Некоторые научные модели показывают, что Титан может поддерживать жизнь не на водной основе (см.), хотя не все ученые согласны с этими теориями, так как они все еще являются предметом широких дискуссий и дебатов в научном сообществе, в том числе и в NASA[25][26][27].

Мир ПНК

продолжение следует...

Продолжение:


Часть 1 Альтернативная биохимия CHNOPS
Часть 2 Замена воды - Альтернативная биохимия CHNOPS

См.также

  • Углеродный шовинизм
  • Зеркальная жизнь[en]
  • Сверхкритическая флюидная экстракция
  • Теневая биосфера
  • Инженерная биология
  • Синтетическая биология
  • Хатимодзи-ДНК

Исследование, описанное в статье про альтернативная биохимия, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое альтернативная биохимия и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Общая химия

создано: 2022-02-19
обновлено: 2024-11-11
41



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Общая химия

Термины: Общая химия