Лекция
Привет, Вы узнаете о том , что такое акустооптическое взаимодействие , Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое акустооптическое взаимодействие , настоятельно рекомендую прочитать все из категории Акустроэлектроника и акустооптика.
акустооптическое взаимодействие сводится к эффектам оптической рефракции и дифракции лишь при низких интенсивностях оптического излучения. С повышением интенсивности света все возрастающую роль начинают играть нелинейные эффекты воздействия света на среду. Из-за электрострикции и эффектов нагревания среды оптическим излучением в ней возникают переменные упругие напряжения и генерируются звуковые волны с частотами от слышимых до гиперзвуковых - т. н. оптоакустические или фотоакустические явления.
В поле мощного оптического излучения в результате одновременного протекания процессов дифракции света на УЗ и генерации УЗ-волн вследствие электрострикции происходит усиление светом УЗ-волны. В частности, при распространении в среде интенсивного лазерного излучения наблюдается т. н. вынужденное рассеяние Мандельштама-Бриллюэна, при котором происходит усиление лазерным излучением тепловых акустических шумов, сопровождающееся нарастанием интенсивности рассеянного света. К оптоакустическим эффектам относится также генерация акустических колебаний периодически повторяющимися световыми импульсами, которая обусловлена переменными механическими напряжениями, возникающими в результате теплового расширения при периодическом локальном нагревании среды светом.
Эффекты акустооптического взаимодействия используются как при физических исследованиях, так и в технике. Дифракция света на УЗ дает возможность измерять локальные характеристики УЗ-полей. По угловым зависимостям дифрагированного света определяются диаграмма направленности и спектральный состав акустического излучения. Анализ эффективности дифракции в различных точках образца позволяет восстановить картину пространственного распределения интенсивности звука. Об этом говорит сайт https://intellect.icu . В частности, на основе акустооптических эффектов осуществляется визуализация звуковых полей. С помощью брэгговской дифракции удается получить информацию о спектральном, угловом и пространственном распределении акустических фононов в ДВ-области фононного спектра. Этот метод представляет ценность для изучения неравновесных акустических фононов, например, в условиях фононной (акустоэлектрической) неустойчивости в полупроводниках, обусловленной усилением УЗ сверхзвуковым дрейфом носителей заряда.
Акустооптическая дифракция позволяет также измерять многие параметры вещества: скорость и коэффициент поглощения звука, модули упругости 2-го, 3-го и более высоких порядков, упругооптические постоянные и др. величины. Так, из условия Брэгга по известным значениям частоты УЗ f и длины волны света , и по измеренному углу 20 Б между падающим и дифрагированными световыми лучами определяют скорость звука: (где 20 Б - угол Брэгга). На основе полученных таким образом значений Сзв, для различных направлений рассчитывается полная матрица модулей упругости Cij. Коэффициент поглощения звука можно найти, сравнивая интенсивности I1 и I2 дифрагированного света, измеренные при двух положениях падающего светового луча, смещенных друг относительно друга на расстояние, а вдоль направления распространения звуковой волны:
При распространении в среде звуковых волн большой интенсивности данные о модулях упругости высших порядков получают измеряя с помощью брэгговской дифракции амплитуды возникающих в волне гармоник, которые пропорциональны нелинейным модулям упругости соответствующих порядков.
Для исследования дисперсии скорости звука и коэффициента его поглощения на гиперзвуковых частотах используется рассеяние Мандельштама-Бриллюэна. Пропуская через среду луч когерентного оптического излучения и фиксируя угол рассеяния 0, можно из условий Брэгга по величине спектрального сдвига f компонент Мандельштама-Бриллюэна определить скорость звука Сзв на данной частоте f. На основе измерений полуширины компонент Мандельштама-Бриллюэна определяется коэффициент поглощения на этой частоте:
На основе оптоакустической генерации звука создан метод фотоакустической спектроскопии для получения спектров оптического поглощения веществ в различных физических состояниях. В этом методе коэффициент поглощения света измеряется по интенсивности звуковых колебаний, возбуждаемых периодически прерываемым светом. Например, при периодическом нагреве газа в нем возникают звуковые колебания с амплитудой, пропорциональной поглощенной световой энергии. Меняя длину волны падающего света, можно получить фотоакустический спектр вещества - полный аналог спектра поглощения, измеряемого обычными методами. Достоинство фотоакустической спектроскопии в высокой чувствительности метода, позволяющего получать спектры оптического поглощения в широком диапазоне световых длин волн, включающем в себя как области сильного поглощения, так и области прозрачности; кроме того, этим методом измеряется только та часть энергии падающего излучения, которая действительно поглощается веществом, а рассеянное излучение никакого вклада не дает. Это позволяет исследовать спектры поглощения образцов с плохим качеством поверхности: порошков, рыхлых, пористых материалов, биологических объектов.
Информация, изложенная в данной статье про акустооптическое взаимодействие , подчеркивают роль современных технологий в обеспечении масштабируемости и доступности. Надеюсь, что теперь ты понял что такое акустооптическое взаимодействие и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Акустроэлектроника и акустооптика
Из статьи мы узнали кратко, но содержательно про акустооптическое взаимодействие
Комментарии
Оставить комментарий
Акустроэлектроника и акустооптика
Термины: Акустроэлектроника и акустооптика