Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Лекция



Сразу хочу сказать, что здесь никакой воды про резистор, и только нужная информация. Для того чтобы лучше понимать что такое резистор, переменный резистор, подстроечный резистор, варистор, полупроводниковые резисторы , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база.

резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования егоэлектрического сопротивления.

Кроме электрического сопротивления резисторы также характеризуются паразитной емкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики. Резисторы в электрических цепях электровозов используют для ограничения тока, регулирования напряжения и тока на отдельных ее участках.

Резистр является пассивным однопортовым элементом

  • Сопротивление: конститутивное отношение определяется как .Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
  • Емкость: конститутивное отношение определяется как .Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
  • Индуктивность: конститутивное отношение определяется как .Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
  • Memristance(не включен): конститутивное отношение определяется как .Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

где произвольная функция от двух переменных.Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Онлайн демонстрация и симуляция работы Закон Ома:

Открыть на весь экран Закон Ома

Обозначение резисторов на схемах

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

а) обозначение, принятое в России и в Европе
б) принятое в США

Старое обозначение резистора на схемах

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Вначале резисторы изображали на схемах в виде ломаной линии — меандра (рис. 1,а, б), которая обозначала высокоомный провод, намотанный на изоляционный каркас. По мере усложнения радиоприборов число резисторов в них увеличивалось, и, чтобы облегчить начертание, их решли изображать на схемах в виде зубчатой линии (рис. 1,в).

На смену этому символу пришел символ в виде прямоугольника (рис. 1,г), который стали применять для обозначения любого резистора, независимо от его конструкции и особенностей.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

резисторы разных номиналов и точности, промаркированные с помощью цветовой схемы

В России условные графические обозначения резисторов на схемах должны соответствовать ГОСТ 2.728-74. В соответствии с ним, постоянные резисторы обозначаются следующим образом:

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Переменные, подстроечные и нелинейные резисторы обозначаются следующим образом:

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Цепи, состоящие из резисторов

Последовательное соединение резисторов

При последовательном соединении резисторов их сопротивления складываются

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Доказательство [показать]

Если Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение, то общее сопротивление равно: Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

При последовательном соединении резисторов их общее сопротивление будет больше наибольшего из сопротивлений.

Параллельное соединение резисторов

При параллельном соединении резисторов складываются величины, обратные сопротивлению (то есть общая проводимость Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение складывается из проводимостей каждого резистора Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение)

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включенные между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее(искомое) сопротивление.

Доказательство

Для двух параллельно соединенных резисторов их общее сопротивление равно: Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение.

Если Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение, то общее сопротивление равно: Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Смешанное соединение резисторов

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Схема состоит из двух параллельно включенных блоков, один из них состоит из последовательно включенных резисторов Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение и Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение, общим сопротивлением Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение, другой из резистора Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение, общая проводимость будет равна Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение , то есть общее сопротивление Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение.

Для расчета таких цепей из резисторов, которые нельзя разбить на блоки последовательно или параллельно соединенные между собой, применяют правила Кирхгофа. Иногда для упрощения расчетов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.

Онлайн демонстрация и симуляция работы Делитель напряжения:

Открыть на весь экран Делитель напряжения

Мощность резисторов

Как при параллельном так и при последовательном соединении резисторов, итоговая мощность будет равна сумме соединяемых резисторов.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Делитель напряжения

Делитель напряжения

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Делитель напряжения.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Если R=9R1, то UWY=0,1UWE, то есть произойдет деление входного напряжения в 10 раз.

Классификация резисторов

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Три резистора разных номиналов для поверхностного монтажа (SMD), припаянные на печатную плату.

Резисторы являются элементами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду ВАХ, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологии изготовления.

По назначению:

  • резисторы общего назначения;
  • резисторы специального назначения:
    • высокоомные (сопротивления от десятка МОм до единиц ТОм, рабочие напряжения 100..400 В);
    • высоковольтные (рабочие напряжения — десятки кВ);
    • высокочастотные (имеют малые собственные индуктивности и емкости, рабочие частоты до сотен МГц);
    • прецизионные и сверхпрецизионные (повышенная точность, допуск 0,001 — 1 %).

По характеру изменения сопротивления:

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Постоянные резисторы (для навесного монтажа).
Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

переменный резистор .
Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Подстроечные резисторы.
Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Прецизионный многооборотный подстроечный резистор .
  • постоянные резисторы;
  • переменные регулировочные резисторы;
  • переменные подстроечные резисторы.

По способу защиты:

  • изолированные;
  • неизолированные;
  • вакуумные;
  • герметизированные.

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

  • линейные резисторы;
  • нелинейные резисторы:
    • варистор ы — сопротивление зависит от приложенного напряжения;
    • терморезисторы — сопротивление зависит от температуры;
    • фоторезисторы — сопротивление зависит от освещенности;
    • тензорезисторы — сопротивление зависит от деформации резистора;
    • магниторезисторы — сопротивление зависит от величины магнитного поля.

По технологии изготовления[ :

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение Проволочный резистор с отводом

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение Пленочный угольный резистор (часть защитного покрытия удалена для демонстрации токопроводного слоя).

.
  • Проволочные резисторы. Представляют собой кусок проволоки с высоким удельным сопротивлением, намотанный на какой-либо каркас. Могут иметь значительную паразитную индуктивность. Высокоомные малогабаритные проволочные резисторы иногда изготавливают из микропровода. Все остальные резисторы называются непроволчными резисторами.
  • Пленочные металлические резисторы. Представляют собой тонкую пленку металла с высоким удельным сопротивлением, напыленную на керамический сердечник, на концы сердечника надеты металлические колпачки с проволочными выводами. Иногда, для повышения сопротивления, в пленке прорезается винтовая канавка. Это наиболее распространенный тип резисторов.
  • Металлофольговые резисторы. В качестве резистивного материала используется тонкая металлическая лента.
  • Угольные резисторы. Бывают пленочными и объемными. Используют высокое удельное сопротивление графита.
  • Интегральный резистор. Используется сопротивление слаболегированного полупроводника. Эти резисторы могут иметь большую нелинейность вольт-амперной характеристики. В основном используются в составе интегральных микросхем, где применить другие типы резисторов невозможно или не технологично.

Резисторы, выпускаемые промышленностью

Резисторы

Выпускаемые промышленностью резисторы одного и того же номинала имеют разброс сопротивлений. Значение возможного разброса определяется точностью резистора. Выпускают резисторы с точностью 20 %, 10 %, 5 %, и т. д. вплоть до 0,01 % . Номиналы резисторов не произвольны: их значения выбираются из специальных номинальных рядов, наиболее часто изноминальных рядов E6 (20 %), E12 (10 %) или E24 (для резисторов с точностью до 5 %), для более точных резисторов используются более точные ряды (например E48).

Резисторы, выпускаемые промышленностью характеризуются также определенным значением максимальной рассеиваемой мощности (выпускаются резисторы мощностью 0,125Вт 0,25Вт 0,5Вт 1Вт 2Вт 5Вт) (Согласно ГОСТ 24013-80 и ГОСТ 10318-80 советской радиотехнической промышленностью выпускались резисторы следующих номиналов мощностей, в Ваттах, Вт.: 0.01, 0.025, 0.05, 0.062, 0.125, 0.5, 1, 2, 3, 4, 5, 8, 10, 16, 25, 40, 63, 100, 160, 250, 500)

Маркировка резисторов с проволочными выводами

Резисторы, в особенности малой мощности — мелкие детали, резистор мощностью 0,125Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Прочитать на такой детали номинал с десятичной запятой трудно, поэтому, при указании номинала вместо десятичной точки пишут букву, соответствующую единицам измерения (К — для килоомов, М — для мегаомов, E или R для единиц Ом). Кроме того, любой номинал отображается максимум тремя символами. Например 4K7 обозначает резистор, сопротивлением 4,7 кОм, 1R0 — 1 Ом, М12 - 120кОм (0,12МОм) и т. Об этом говорит сайт https://intellect.icu . д. Однако в таком виде наносить номиналы на маленькие резисторы сложно, и для них применяют маркировку цветными полосами.

Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвертая — десятичный множитель, пятая — точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надежность резистора (% отказов на 1000 часов работы)

Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья — множитель, четвертая — точность, а пятая — температурный коэффициент.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Пример

Допустим, на резисторе имеются четыре полосы: коричневая, черная, красная и золотая. Первые две полоски дают 1 0, третья 100, четвертая дает точность 5 %, итого резистор сопротивлением 10·100 Ом = 1 кОм, с точностью ±5 %.

Запомнить цветную кодировку резисторов нетрудно: после черной 0 и коричневой 1 идет последовательность цветов радуги. Так как маркировка была придумана в англоязычных странах, голубой и синий цвета не различаются.

Также для облегчения запоминания можно воспользоваться мнемоническим правилом: "Часто Каждый Красный Охотник Желает Знать Сколько Фазанов Село в Болоте".

Для облегчения различные разработчики программного обеспечения создают программы, которые определяют сопротивление резистора.

Поскольку резистор симметричная деталь, может возникнуть вопрос: «Начиная с какой стороны читать полоски?» Для четырехполосной маркировки обычных резисторов с точностью 5 и 10 % вопрос решается просто: золотая или серебряная полоска всегда стоит в конце. Для трехполосочного кода первая полоска стоит ближе к краю резистора, чем последняя. Для других вариантов важно, чтобы получалось значение сопротивления из номинального ряда, если не получается, нужно читать наоборот. (Для резисторов МЛТ-0,125 производства СССР с 4 полосками, первой является полоска, нанесенная ближе к краю; обычно она находится на металлическом стаканчике вывода, а остальные три — на более узком керамическом теле резистора). В резисторах Panasonic с пятью полосами, резистор располагается так, чтобы отдельно стоящая полоска была справа, при этом первые 2 полоски - определяют первые два знака, третья полоса - степень множителя, четвертая полоса - допуск, пятая полоса - область применения резистора. Особый случай использования цветовой маркировки резисторов — перемычки нулевого сопротивления. Они обозначаются одной черной (0) полоской по центру. (Использование таких резисторо-подобных перемычек вместо дешевых кусков проволоки объясняется желанием производителей сократить расходы на перенастройку сборочных автоматов).

Маркировка SMD-резисторов

«Резисторы» нулевого сопротивления (перемычки на плате) кодируются одной цифрой «0». Бо́льшее количество знаков обозначает:

Кодирование 3 или 4 цифрами

  • ABC обозначает AB•10C Ом

например 102 — это 10•10² Ом = 1 кОм

  • ABCD обозначает ABC•10D Ом, точность 1 % (ряд E96)

например 1002 — это 100•10² Ом = 10 кОм

1кОм=1000Ом

Кодирование буква-цифра-цифра (JIS-C-5201)

Ряд E96, точность 1 %.

Мантисса m значения сопротивления кодируется 2 цифрами (см таблицу), степень при 10 кодируется буквой.

Примеры: 09R = 12,1 Ом; 80E = 6,65 МОм; все 1 %.

  • S или Y = 10−2
  • R или X = 10−1
  • A = 100 = 1
  • B = 101
  • C = 10²
  • D = 10³
  • E = 104
  • F = 105

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Кодирование буква-цифра-цифра

Ряды E24 и E12, точность 2 %, 5 % и 10 %. (Ряд E48 не используется).

Степень при 10 кодируется буквой (так же, как для 1%-х сопротивлений, см список выше), мантисса m значения сопротивления и точность кодируется 2 цифрами (см таблицу).

Примеры:

  • 2 %, 1,00 Ом = S01
  • 5 %, 1,00 Ом = S25
  • 5 %, 510 Ом = A42
  • 10 %, 1,00 Ом = S49
  • 10 %, 820 кОм = D60

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Некоторые дополнительные свойства резисторов

Зависимость сопротивления от температуры

Терморезистор

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Лабораторный резистор

Сопротивление металлических и проволочных резисторов немного зависит от температуы. При этом зависимость от температуры практически линейная Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение, так как коэффициенты 2 и 4 порядка достаточно малы и при обычных измерениях ими можно пренебречь. Коэффициент Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение называют температурным коэффициентом сопротивления. Такая зависимость сопротивления от температуры позволяет использовать резисторы в качестве термометров. Сопротивление полупроводниковых резисторов может зависеть от температуры сильнее, возможно, даже экспоненциально по закону Аррениуса, однако в практическом диапазоне температур и эту экспоненциальную зависимость можно заменить линейной.

Шум резисторов

Даже идеальный резистор при температуре выше абсолютного нуля является источником шума. Это следует из фундаментальной флуктуационно-диссипационной теоремы (в применении к электрическим цепям это утверждение известно также как теорема Найквиста). При частоте, существенно меньшей чем Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение (где Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение —постоянная Больцмана, Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение — абсолютная температура резистора в градусах Кельвина, Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение — постоянная Планка) спектр теплового шума равномерный («белый шум»), спектральная плотность шума (преобразование Фурье от коррелятора напряжений шума) Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение, где Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение. Видно, что чем больше сопротивление, тем больше эффективное напряжение шума, также, эффективное напряжение шума пропорционально корню из температуры.

Даже при абсолютном нуле температур у резисторов, составленных из квантовых точечных контактов будет иметься шум, обусловленный Ферми-статистикой. Устраним путем последовательного и параллельного включения нескольких контактов.

Уровень шума реальных резисторов выше. В шуме реальных резисторов также всегда присутствует компонента, интенсивность которой пропорциональна обратной частоте, то есть 1/f шум или «розовый шум». Этот шум возникает из-за множества причин, одна из главных перезарядка ионов примесей, на которых локализованы электроны.

Шумы резисторов возникают за счет прохождения в них тока. В переменных резисторах имеются так называемые «механические» шумы, возникающие при работе подвижных контактов.

Применеие резисторов в схемах

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

  1. Токоограничивающий резистор (current-limiting resistor)
  2. Стягивающий, подтягивающий резистор (pull-down / pull-up resistor)
  3. Делитель напряжения (voltage divider)
  4. пусковые резисторы,
  5. переходные резисторы,
  6. шунтирующие резисторы,
  7. демпферные резисторы,
  8. добавочные резисторы
  9. регулировочные резисторы ( (потенциометры))
  • пусковые резисторы для ограничения тока в момент подключения к сети неподвижного двигателя и для поддержания тока на определенном уровне в процессе его разгона;В период пуска электровоза последовательно с тяговыми двигателями включают пусковые резисторы. Изменяя сопротивление резисторов, машинист регулирует напряжение и ток тяговых двигателей, а, следовательно, и силу тяги электровоза. При увеличении скорости возрастает противо-э.д.с. тяговых машин и снижается ток. Для поддержания тока из цепи выводят пусковые резисторы, замыкая отдельные секции контакторами.
  • тормозные резисторы для ограничения тока двигателя при его торможении;
  • регулировочные резисторы для регулирования тока или напряжения в электрической цепи;
  • добавочные резисторы, включаемые последовательно в цепь электрического аппарата с целью снижения напряжения на нем;
  • разрядные резисторы, включаемые параллельно обмоткам электромагнитов или других индуктивностей с целью ограничения перенапряжений при их отключении или для замедления отпускания реле и контакторов, такие резисторы используются также для разряда емкостных накопителей;
  • балластные резисторы, включаемые в цепь последовательно для поглощения части энергии или параллельно источнику с целью предохранения его от перенапряжений при отключении нагрузки;
  • нагрузочные резисторы для создания искусственной нагрузки генераторов и других источников; они используются при испытаниях электрических аппаратов;
  • нагревательные резисторы для нагрева окружающей среды или аппаратов при низких температурах;
  • заземляющие резисторы, включенные между землей и нулевой точкой генератора или трансформатора с целью ограничения токов короткого замыкания на землю и возможных перенапряжений при замыкании на землю;
  • установочные резисторы для установки определенного значения тока или напряжения в приемниках энергии.В режиме рекуперативного торможения в цепь обмоток якорей тяговых двигателей включают уравнивающие резисторы, которые обеспечивают устойчивую работу тяговых двигателей и равномерную их нагрузку.
  • Резисторы переходные служат для шунтирования обмоток тяговых двигателей в момент переключения их с одного соединения на другое. Переходные резисторы препятствуют переходу замкнутых на них тяговых двигателей в режим генераторов и делают более плавным движение электродвигателя в период переключения двигателей. При переключении тяговых двигателей с одного соединения на другое на некоторых типах электровозов используют переходные резисторы, на которые кратковременно замыкают часть двигателей. Переходные резисторы препятствуют переходу замкнутых на них тяговых двигателей в режим генераторов и делают более плавным движение электровоза в период переключения двигателей
  • Для увеличения скорости движения применяют ослабление возбуждения тяговых двигателей за счет включения параллельно обмоткам возбуждения шунтирующего контура. В него входят и шунтирующие резисторы, сопротивление которых регулируют ступенями за счет замыкания части секций контакторами.

  • В режиме рекуперативного торможения в цепь обмоток якорей тяговых двигателей включают уравнивающие резисторы, которые обеспечивают устойчивую работу тяговых двигателей и равномерную их нагрузку.
  • Регулировочные переменные резисторы служат для оперативного изменения сопротивления, подстроечные обычно для отладки различных параметров схем.
  • демпферные резисторы используют во вспомогательных цепях резисторы используют для пуска вспомогательных машин. В цепях вспомогательных машин применяют резисторы для ограничения токов при пуске и коротких замыканиях. В общей цепи перед быстродействующим выключателем вспомогательных цепей или перед контактором вспомогательных цепей включают общий демпферный резистор, ограничивающий ток короткого замыкания. В цепях каждого электродвигателя вспомогательных машин включают демпферные резисторы или пусковые панели.
    Демпферные резисторы включают последовательно в цепь двигателя в течение пуска и всего времени последующей его работы. Их применяют при
    сравнительно небольших мощностях вспомогательных машин, а также при частых пусках двигателей (например, мотор-компрессоров). При большой
    мощности вспомогательных машин оставлять включенными резисторы после пуска и разгона неэкономично, так как в них теряется часть электрической
    энергии. В этом случае в цепь вспомогательной машины включают пусковую панель, состоящую из резистора и контактора МКП-23, закорачивающего весь резистор или его часть после пуска и разгона машины.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Для защиты БПН от перенапряжений в цепь БПН включается демпферный резистор сопротивлением 2 Ома, для этого используется элемент СР-200.

  1. RC цепь, Интегрирующая RC цепь (усредняет значение сигналов до одного постоянного уровня, Можно сказать, усредняет площадь до одного постоянного уровня.),Дифференцирующая RC цепь ( весь переменный сигнал будет падать на резисторе, с которого снимаем сигнал,Но если мы будем подавать смешанный сигнал, то есть переменный ток + постоянный ток, то на выходе мы получим просто переменный ток.)

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Интегрирующая RC цепь фильтр низких частот (ФНЧ)

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Дифференцирующая RC цепь фильтром высоких частот (ФВЧ)

  1. RL цепь(использование в фильрах и отсекателе переменного напряжения)
  2. RLC цепь (используется в фильтрах, генераторах, умножителях напряжения,Цепь импульсного разряда )
  3. R+L параллельно соединенный - Это шунтирующий демпферный резистор.Снижает добротность паразитного контура. и убирает резонансные помехи, может испольховаться в импульсных источниках питания или драйверах тока для сведодиодов
Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
LR-цепь дифференцирующего типа является фильтром верхних частот.
Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определенном токе — резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подается ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмем такую схему

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не дает большей части тока идти в землю: сигнал пойдет к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой. Такя схема может испольвоваться как льтернатива светодиодного драйвера(стабилизатора тока) для светодиодных лент

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5.

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу Vout ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Таким образом, сила тока протекающая через резисторы

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Теперь, когда нам известен ток в R2, расчитаем напряжение вокруг него:

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Или если отавить формулу в общем виде:

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.

Вольт-амперная характеристика (ВАХ) резистора

При подключении резистора к электрической цепи его поведение определяется его электрическими характеристиками. Зависимость между приложенным напряжением и током, протекающим через резистор, описывается законом Ома и называется вольт-амперной характеристикой (ВАХ).

Иногда в технической литературе используется сокращенная аббревиатура - ВАХ. График этой зависимости в декартовой системе координат "напряжение - U, ток - I" представляет собой прямую линию, проходящую через начало координат.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Когда к резистору подается положительное напряжение, ток течет в положительном направлении.

Если меняется полярность приложенного напряжения, то направление протекающего тока также меняется на противоположное.

Резисторы с линейной вольт-амперной характеристикой называются линейными резисторами.

В отличие от аналогичных элементов, таких как варисторы или термисторы, у которых вольт-амперная характеристика нелинейна, такие резисторы называются нелинейными.

Чем больше номинальное сопротивление резистора, тем меньше угол наклона "а" в вольт-амперной характеристике относительно оси абсцисс, и тем более пологой будет график вольт-амперной характеристики.

Если к резистору приложить напряжение U1, то в соответствии с приведенным графиком через резистор будет протекать ток I1. Точку А принято называть рабочей точкой. Ток I1 соответствует току в рабочей точке, а напряжение U1 - напряжению в рабочей точке или напряжению смещения рабочей точки.

полупроводниковые резисторы


Полупроводниковым резистором называют полупроводниковый прибор с двумя выводами, в котором используется зависимость электрического сопротивления полупроводника от напряжения, температуры, освещенности и других управляющих параметров.

Линейные
Полупроводниковый резистор , в котором применяется слаболегированный материал типа кремния или арсенида галлия. Удельное сопротивление мало зависит от напряженности электрического поля => сопротивление = const в широком диапазоне U и I. применяются в интегральных схемах.

Нелинейные
Варистор – полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения и его ВАХ нелинейная.

Терморезистор – полупроводниковый резистор, в котором используется зависимость электрического сопротивления полупроводника от температуры.
• Термистор: R↓ с ↑t°
• Позистор : R↑ с ↑t°

Фоторезистор – полупроводниковый резистор, сопротивление которого зависит от освещенности.

Тензорезистор – полупроводниковый резистор, сопротивление которого зависит от механических деформаций.


Классификация и условные обозначения полупроводниковых резисторов.

Тип резисторов Условное обозначение
Линейные резисторы Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
Варисторы Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
Тензорезисторы Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
Терморезисторы Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение
Фоторезисторы Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Первые две группы полупроводниковых резисторов в соответствии с этой классификацией — линейные резисторы и варисторы — имеют электрические характеристики, слабо зависящие от внешних факторов: температуры окружающей среды, вибрации, влажности, освещенности и др. Для остальных групп полупроводниковых резисторов, наоборот, характерна сильная зависимость их электрических характеристик от внешних факторов. Так, характеристики терморезисторов существенно зависят от температуры, характеристики фоторезисторов — от освещенности, характеристики тензорезисторов — от механических напряжений.

Варистор

Варистор (лат. variable) - переменный (resistor — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать свое сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины . При дальнейшем увеличении напряжения сопротивление уменьшается еще сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Обозначение на схеме

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

пример внешнего вида варистра

Изготовление варистров

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и пленочные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Свойства варистров

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение,

где U - напряжение, I - ток варистора

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления (ТКС) варистора — отрицательная величина.

Принцп действия варистора - скачкообразное изменение сопротивления при определенных значениях напряжения. То есть, до заданного значения, сопротивление варистора содержится в стабильном состоянии. После превышения вольтажа, сопротивление стремительно уменьшается и стремится к нулю.
Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Как видно на графике вольт амперной характеристики, сила тока, протекающего через варистор, стабильна в заданном диапазоне напряжения. При его повышении, ток резко возрастает. Это происходит именно из-за лавинообразного снижения сопротивления.

Применение варистров

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,0001 до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дешевы и надежны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Материалы варисторов

Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.

Резистор, переменные и полупроводниковые резисторы. Виды. Варистор, Характеристики принцип действия и применение

Параметры варистров

При описании характеристик варисторов в основном используются следующие параметры :

  • Классификационное напряжение Un — напряжение при определенном токе (обычно 1 мА), условный параметр для маркировки изделий;
  • Максимально допустимое напряжение Um для постоянного тока и для переменного тока (среднеквадратичное или действующее значение), диапазон — от нескольких В до нескольких десятков кВ; может быть превышено только при перенапряжениях;
  • Номинальная средняя рассеиваемая мощность P — мощность в ваттах (Вт), которую варистор может рассеивать в течение всего срока службы при сохранении параметров в заданных пределах;
  • Максимальный импульсный ток Ipp (Peak Surge Current) в амперах (А), для которого нормируется время нарастания и длительность импульса;
  • Максимальная допустимая поглощаемая энергия W (Absorption energy) в джоулях (Дж), при воздействии одиночного импульса;
  • Ёмкость Co, измеренная в закрытом состоянии при заданной частоте; зависит от приложенного напряжения — когда варистор пропускает через себя большой ток, она падает до нуля.

Рабочее напряжение варистора выбирается исходя из допустимой энергии рассеяния и максимальной амплитуды напряжения. Рекомендуется, чтобы на переменном напряжении оно не превышало 0,6 Un, а на постоянном — 0,85 Un. Например, в сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В.

Вау!! 😲 Ты еще не читал? Это зря!

Пожалуйста, пиши комментарии, если ты обнаружил что-то неправильное или если ты желаешь поделиться дополнительной информацией про резистор Надеюсь, что теперь ты понял что такое резистор, переменный резистор, подстроечный резистор, варистор, полупроводниковые резисторы и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база

создано: 2014-09-13
обновлено: 2023-08-03
133008



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей


avatar
22.4.2020 2:5

есть еще безиндукционные резисторы и
резисторы с нулевым сопротивлением


Комментарии

Meme
13-08-2021
судя по вашим эмуляциям скорость перемещения электрона по проводнику зависит от общего сопротивления проводника
Admin
14-08-2021
А скорость движения электронов можно вычислить по следующей формуле: I= n·A·V·Q, г де I – сила тока; n – количество электронов на кубический метр; A – сечение провода; V – скорость течения электрона; Q – заряд электрона; то есть скорость электрона прямо пропорциональна силе тока (напряжённости- если рассматриваем дрейфовую скорость) и обратно пропорциональна сопротивлению

Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Электроника, Микроэлектроника , Элементная база

Термины: Электроника, Микроэлектроника , Элементная база